Разность потенциалов обозначение и единица измерения. A. Напряжение

В чём измеряется напряжение и чем его измеряют

Разность потенциалов обозначение и единица измерения. A. Напряжение

Напряжение — известная величина, используемая во всех световых и аккумуляторных источниках. Что оно собой представляет, какие разновидности существуют, чем измеряют напряжение, в каких единицах измеряется электрическое напряжение и многое другое далее.

Суть явления

Напряжением называется электрическая движущая сила, которая призвана толкать свободные виды электронов от одного атома к другому в определенном направлении. Обязательное требование для протекания зарядов это наличие цепи с замкнутым контуром, который создает условия, для того чтобы их передвигать. Если имеется обрыв электроцепи, то процесс направленного перемещения частиц прекращается.

Обратите внимание! Стоит отметить, что единица напряжения электрической цепи зависит от того, какой проводник имеет материал, как подключена нагрузка, какая есть температура.

Что это такое

Разновидности

Бывает двух видов: постоянным и переменным. Первое есть в электростатических видах цепей и тех, которые имеют постоянный ток. Переменный встречается там, где есть синусоидальная энергия. Важно, что синусоидальная энергия делится на действующее, мгновенное со средневыпрямленным. Единица измерения напряжения электрического тока вольт.

Стоит также отметить, что величина энергии между фазами называется линейной фазой, а показатель тока земли и фаз — фазным. Подобное правило используется во всех воздушных линиях. На территории Российской Федерации в электрической бытовой сети стандартное — 380 вольт, а фазное — 220 вольт.

Основные разновидности

Постоянное напряжение

Постоянным называется разность между электрическими потенциалами, при которой остается такой же величина с перепадами полярности на протяжении конкретного периода.

Главным преимуществом постоянной энергии является тот факт, что отсутствует реактивная мощность.

Это означает, что вся мощность, которая вырабатывается при помощи генератора, потребляется нагрузкой за исключением проводных потерь. Течет по всему проводниковому сечению.

Что касается недостатков, есть сложность повышения со снижением энергии, то есть в моменте преобразования ее из-за конструкции преобразователей и отсутствия мощных полупроводниковых ключей. К тому же сложно развязывается высокая и низкая энергия.

Обратите внимание! Используется постоянная энергия в электронных схемах, гальванических элементах, аккумуляторах, электролизных установках, сварочных инструментах, инверторных преобразователях и многих других приборах.

Постоянный ток

Переменное напряжение

Переменным называется ток, изменяющийся по величине и направлению периодически, но при этом сохраняющий свое направление в электроцепи неизменно. Нередко его называют синусоидальным. Одно направление, в котором движется энергия, называется положительным, а другое — отрицательным.

Поэтому получающаяся величина называется положительной и отрицательной. Такой показатель является алгебраической величиной. В ответ на вопрос, как называется единица измерения напряжения, необходимо отметить, что это вольт. Значение его определяется по направлению. Максимальное значение — амплитуда.

Бывает он:

Двухфазный

Трехфазный

Многофазный

Используется активно в промышленности, на электрической станции, на трансформаторной подстанции и передается в каждый дом при помощи линий электрических передач. Больше всего используется три фазы для подключения. Подобная электрификация распространена на многих железных дорогах.

Обратите внимание! Стоит отметить, что имеются также некоторые виды двухсистемных электровозов, которые работают во многих случаях на переменном показателе.

Переменный ток

Единицы измерения

Измеряется напряженье в вольтах. Обозначается В или Вольт. Одно значение выражено в разности нескольких точек на электрическом поле. Значение 220 вольт говорит о том, что электрическое поле призвано тратить энергию, чтобы протаскивать заряды через всю электрическую цепь с нагрузкой.

Измерительные приборы

Чтобы измерить силу, используется стрелочный или аналоговый, цифровой или электронный вольтметр. Благодаря этим приборам можно измерять и контролировать характеристики сигналов. Также сделать измерения можно осциллографами. Они работают благодаря тому, что энергия отклоняется электронным лучом и поступает на прибор, выдающий показатель переменной величины.

Вольтметр как основной прибор измерения

Напряжение это физическая величина, показывающая размер тока в цепи и оборудовании в вольтах. Ток бывает постоянным и переменным. Отличие в том, что первое понятие обозначает, что ток постоянно меняет свою полярность и протекает в сети переменно. Во втором же случае ток проходит по электроцепи без перерывов. Измеряется вольтметром.

Источник: https://rusenergetics.ru/ustroistvo/v-chyom-izmeryaetsya-napryazhenie

Разность потенциалов

Разность потенциалов обозначение и единица измерения. A. Напряжение

Поскольку электрический ток является упорядоченным движением заряженных частиц, то для определения величины тока необходимо знать, как величину энергии частиц, так и силу стороннего воздействия на них.

Сущность понятия потенциальной разницы

Для изучения свойств заряженных частиц, помещенных в электростатическое поле, введено понятие потенциала. Оно означает отношение энергии заряда, помещенного в электростатическое поле, к его величине.

При переносе заряженной частицы в другую точку поля меняется его потенциальная энергия, а величина заряда остается неизменной. Для переноса требуется затратить некоторое количество энергии. Данная энергия по переносу единицы заряда получила название электрического напряжения. Соответственно, больший запас энергии будет ускорять перенос, то есть, чем больше напряжение, тем больше ток в цепи.

В данном случае разность потенциалов – это численное равенство напряжению между точками нахождения единичного заряда. Для общего случая здесь должна добавляться работа сторонних сил, которая называется электродвижущей силой (ЭДС). По своей сути, электричество – это работа стороннего источника (генератора) по поддержанию в электросхеме заданных уровней напряжения и тока.

Единица разности потенциалов

Что такое потенциал в электричестве

В честь ученого (Алессандро Вольта), впервые доказавшего существование разницы потенциалов, единица измерения названа Вольт. В международной системе единиц напряжение обозначается символами:

  • В – в русскоязычной литературе;
  • V – в англоязычной литературе.

Кроме этого, существуют кратные обозначения:

  • мВ – милливольт (0.001 В);
  • кВ – киловольт (1000 В);
  • МВ – мегавольт (1000 кВ).

Поток вектора магнитной индукции

Электростатическое поле характеризуется напряженностью, которая вместе с вектором электромагнитной индукции составляет электромагнитное поле.

Если заряженная частица движется в электромагнитном поле, то полную силу, которая воздействует на частицу, определяют по закону Лоренца:

F=q∙E+q∙vхB,

где:

  • q – величина заряда;
  • v – скорость движения;
  • E – величина электрического поля;
  • В – вектор магнитной индукции.

Обратите внимание! В указанной формуле приведены векторные величины. Крестом обозначено векторное произведение.

Силу F воздействия на частицу принято называть силой Лоренца.

Поток вектора магнитной индукции

Данная формула является наиболее общей и может использоваться для вычисления при условии точечного заряда (в том числе единичного).

Теорема Гаусса для магнитного поля

Электрическое поле — что это такое, понятие в физике

Теорема Гаусса является одной из самых основных в электродинамике законов. Существуют теоремы Гаусса для электрического и магнитного полей, которые входят в состав уравнений Максвелла.

При помощи данного закона устанавливается связь между напряженностью электрического поля и заряда в случае произвольной поверхности. Теорема (закон) Гаусса гласит, что в произвольной замкнутой поверхности поток вектора электрического поля пропорционален заряду, заключенному внутри поверхности.

Для магнитного поля теорема Гаусса говорит о том, что поток вектора магнитной индукции через произвольную замкнутую поверхность равен нулю.

Выражение для потенциала поля точечного заряда

Поскольку потенциал равен интегралу от напряженности поля, то можно подставить под знак интеграла выражение для напряженности поля единичного заряда. После интегрирования и преобразования выражение для поля точечного заряда принимает вид:

ϕ=q/(4∙π∙ε0∙ε∙r),

где:

  • ε0 – электрическая постоянная;
  • r – расстояние.

Приведенное выражение свидетельствует, что величина энергии растет пропорционально степени заряженности и падает пропорционально расстоянию.

Проводники в электростатическом поле

Размещение проводника в электростатическом поле приводит к тому, что поле начнет действовать на носители заряда внутри проводящего предмета. Носители начинают перемещаться до тех пор, пока электростатическое поле вне поверхности ни обратится в нуль.

Поскольку поле внутри вещества отсутствует, то во всех точках проводящего материала энергия будет постоянной, а поверхность эквипотенциальной. Векторы напряженности поля направлены под прямым углом в любой точке поверхности проводника.

Проводник в электростатическом поле

Под действием поля заряды внутри проводника отсутствуют, поскольку они сосредоточены исключительно на поверхности. Этот факт используется при экранировке – защите тел от влияния внешних электромагнитных и электростатических полей. Для экранирования может использоваться не только сплошной проводящий материал, но и сетка, так называемая «клетка Фарадея».

Также свойство перемещения заряженных частиц (электронов) используется в электростатических генераторах для получения напряжения в несколько миллионов вольт.

Электроемкость уединенного проводника

Для связи величин заряда и напряжения введено понятие электрической емкости. Для уединенного проводника (такого, на который отсутствует влияние других заряженных тел) значение емкости – величина постоянная и равная отношению количества заряда к потенциалу. Другими словами, емкость показывает, какой заряд нужно сообщить проводнику, чтобы его потенциальная энергия увеличилась на единицу.

Электроемкость не зависит от степени заряженности. Роль играют только:

  • форма;
  • геометрические размеры;
  • диэлектрические свойства среды.

Так же, как и емкость электрического конденсатора, электроемкость проводника будет обозначаться в фарадах.

Обратите внимание! На практике электроемкость проводника составляет очень малую величину. Для увеличения значения, особенно при производстве конденсаторов, как элементов с нормированным значением емкости, разработаны особые технологии.

Падение потенциала вдоль проводника

На концах проводника, помещенного в электрическое поле, начинает наблюдаться разность потенциалов. Вследствие этого электроны начинают перемещаться в сторону увеличения разности. В проводнике возникает электрический ток.

Свободные электроны продвигаются вдоль проводника до тех пор, пока разница ни будет равна нулю. На практике для поддержания заданной величины тока цепи запитываются от источников напряжения или тока.

Разница заключается в следующем:

  • Источник тока поддерживает в цепи постоянный ток вне зависимости от сопротивления нагрузки;
  • Источник напряжения поддерживает на своих зажимах строго постоянную ЭДС, независимо от величины потребляемого тока.

Разница потенциалов (падение напряжения) пропорциональна расстоянию от концов проводника, то есть обладает линейной зависимостью.

Опыт Вольта

Первым доказал существование разности потенциалов Алессандро Вольта. Для опытов были взяты два диска, выполненных из меди и цинка и насаженных на стержень электроскопа. При соприкосновении меди и цинка листочки электроскопа расходятся, свидетельствуя о наличии электрического заряда.

На основании своих опытов ученый изготовил первый источник электрического напряжения – вольтов столб.

Измерение контактной разности потенциалов

Основная проблема заключатся в том, что контактная разность потенциалов не может быть измерена напрямую, вольтметром, хотя значение ЭДС в цепи с соединением двух различных проводников может составлять от долей до единиц вольт.

Контактная потенциальная разница существенно влияет на вольтамперную характеристику измеряемой цепи. Наглядным примером может служить полупроводниковый диод, где подобное явление возникает на границе соприкосновения полупроводников с разным типом проводимости.

Разность потенциалов на практике

С общепринятой точки зрения, разность потенциалов – это напряжение между двумя выбранными точками цепи. В то же время напряжение между каждой из этих точек и третьей точкой будет отличаться в полном соответствии с определением.

Наглядный пример:

  • Точка А в электрической схеме – напряжение 10 В относительно провода заземления;
  • В точке В напряжение составляет 25 В относительно того же провода.

Необходимо найти напряжение между точками А и В.

В данном случае искомая разность составляет:

UAB= ϕА-ϕВ=10-25=15 В.

Рассматриваемые понятия важны для минимального объема знаний в области электротехники и электроники, поскольку на них основываются все расчеты и практические решения. Без этих азов невозможно более углубленное изучение электрических дисциплин.

Источник: https://amperof.ru/teoriya/raznost-potencialov.html

Электрический ток, напряжение — поймет даже ребенок!

Разность потенциалов обозначение и единица измерения. A. Напряжение

Всем привет, на связи с вами снова Владимир Васильев.  Новогодние празднования подходят к концу, а значить надо готовиться к рабочим будням, с чем вас дорогие друзья и поздравляю! Хех,  только не надо расстраиваться и впадать в депрессию, нужно мыслить позитивно.

Так вот в эти новогодние праздники я как-то размышлял о аудитории моего блога: «Кто он? Кто тот посетитель моего блога, что каждый день заходит почитать мои посты?».  Может быть это прошаренный  спец зашел из любопытства почитать что я тут накалякал?  А может это какой -нибудь доктор радиотехнических наук зашел посмотреть как спаять схему мультивибратора?

Источник: http://popayaem.ru/elektricheskij-tok-napryazhenie.html

Электрическое напряжение: определение, формулы и как измеряется

Разность потенциалов обозначение и единица измерения. A. Напряжение

В данной статье мы подробно разберем что такое напряжение, как просто его представить и измерить.

Определение

Напряжение — это электродвижущая сила, которая толкает свободные электроны от одного атома к другому в том же направлении.

В первые дни электричества напряжение было известно как электродвижущая сила (ЭДС). Именно поэтому в уравнениях, таких как закон Ома, напряжение представлено символом Е.

Алессандро Вольта

Единицей электрического потенциала является вольт, названный в честь Алессандро Вольта, итальянского физика, жившего между 1745 и 1827 годами.

Алессандро Вольта был одним из пионеров динамического электричества. Исследуя основные свойства электричества, он изобрел первую батарею и углубил понимание электричества.

Представление напряжения

Легче всего понять напряжении, представив давлении в трубе. При более высоком напряжении (давлении) будет течь более сильный ток. Хотя важно понимать, что напряжение (давление) может существовать без тока (потока), но ток не может существовать без напряжения (давления).

Напряжение часто называют разностью потенциалов, потому что между любыми двумя точками в цепи будет существовать разница в потенциальной энергии электронов. Когда электроны протекают через батарею, их потенциальная энергия увеличивается, но когда они протекают через лампочку, их потенциальная энергия будет уменьшаться, эта энергия покинет цепь в виде света и тепла.

Возьмите, например, обычную 1,5-вольтовую батарею AA, между двумя клеммами (+ и -) есть разность потенциалов 1,5 Вольт.

Напряжение или разность потенциалов — это просто измерение количества энергии (в джоулях) на единицу заряда (кулона). Например, в 1,5-вольтовой батарее AA каждый кулон (заряд) будет получать 1,5 вольт или джоулей энергии.

Напряжение = [Джоуль ÷ Кулон]

1 вольт = 1 джоуль на кулон

100 вольт = 100 джоулей на кулон

1 кулон = 6 200 000 000 000 000 000 электронов (6,2 × 10 18 )

В чем измеряется напряжение

Мы измеряем напряжение в единицах «Вольт», которые обычно обозначаются просто буквой «V» на чертежах и технической литературе. Часто необходимо количественно определить величину напряжения, это делается в соответствии с единицами СИ, наиболее распространенные величины напряжения, которые вы увидите:

  • мегавольт (мВ)
  • киловольт (кВ)
  • вольт (В)
  • милливольт (мВ)
  • микровольт (мкВ)

Напряжение всегда измеряется в двух точках с помощью устройства, называемого вольтметром. Вольтметры являются либо цифровыми, либо аналоговыми, причем последний является наиболее точным.

Вольтметры обычно встроены в портативные цифровые мультиметровые устройства, как показано ниже, они являются распространенным и часто важным инструментом для любого электрика или инженера-электрика.

Обычно вы найдете аналоговые вольтметры на старых электрических панелях, таких как распределительные щиты и генераторы, но почти все новое оборудование будет поставляться с цифровыми счетчиками в качестве стандарта.

Портативный цифровой мультиметр с функцией вольтметра

На электрических схемах вы увидите устройства вольтметра, обозначенные буквой V внутри круга, как показано ниже:

Расчет напряжения

В электрических цепях напряжение может быть рассчитано в соответствии с треугольником Ома. Чтобы найти напряжение (V), просто умножьте ток (I) на сопротивление (R).

Напряжение (V) = ток (I) * сопротивление (R)

V = I *R

Пример

Ток в цепи (I) = 10 А
Сопротивление цепи (R) = 2 Ом

Напряжение (V) = 10 А * 2 Ом

Ответ: V = 20В

Резюме

  • Напряжение — это сила, которая перемещает электроны от одного атома к другому
  • Напряжение также известно как разность потенциалов
  • Напряжение измеряется в единицах «вольт» (В)
  • Батареи увеличивают потенциальную энергию электронов
  • Лампочки и другие нагрузки уменьшают потенциальную энергию электронов
  • Напряжение измеряется с помощью вольтметра
  • Напряжение цепи можно рассчитать путем умножения тока и сопротивления

Источник: https://meanders.ru/naprjazhenie.shtml

Электрическое напряжение

Разность потенциалов обозначение и единица измерения. A. Напряжение

Одна из наиболее часто употребляемых характеристик в электротехнике — это электрическое напряжение, или просто говорят — напряжение.

Очень часто даже у опытных в электротехнике специалистов вызывает затруднение объяснить, что есть это самое напряжение.

Такое явление вполне объяснимо тем, что для практических нужд обслуживания электрооборудования не требуется глубокого понимания сути напряжения, достаточно знаний напряжения в пределах понимания Закона Ома.

Тогда возникает вопрос.

В каком случае и при каких обстоятельствах необходимо глубокое понимание того, в чем суть электрического напряжения? В первую очередь это необходимо для понимания природы (физики) электричества, а также для разработки новых электротехнических устройств и создания новых электротехнических материалов. С другой стороны, углубленное понимание напряжения способствует самопознанию.

Мысленный эксперимент с плоским конденсатором

Для того, чтобы перейти к объяснению сути электрического напряжения требуется понимать, что такое электрическое поле, силовые линии электрического поля и напряженность электрического поля.

Кроме силовых линий в описании поля присутствуют еще и эквипотенциальные линии, а значит есть еще одна характеристика такая как потенциал электрического поля.

Представьте картину равномерно распределенных силовых линий электрического поля, которые пересекают эквипотенциальные линии, причем каждая такая линия будет иметь свое значение потенциала поля.

Для такого представления удобно использовать картину электрического поля плоского конденсатора, который имеет две обкладки и полностью заряжен до некоторого максимального значения.

На таком конденсаторе будет индуцирован электрический заряд, а пространство между обкладками пусть будет наполнено газообразным диэлектриком, например, воздухом. Каждая обкладка конденсатора имеет некоторое количество заряда Q.

Так как обкладки конденсатора выполнены из металла в котором носителем зарядов являются отрицательного типа заряды — электроны, то на одной обкладке будет избыток электронов, а на другой недостаток. Таким образом можно обозначить одну обкладку как +Q, а другую как -Q, и силовые линии электрического поля будут направлены согласно правилам от +Q к -Q. В итоге мы получим картину приведенную на рисунке ниже.

Давайте примем, что размер такого конденсатора больше человеческого роста в несколько раз, пусть обкладки будут представлять собой стены двух больших высоких зданий, которые обклеили металлическими листами сваренными вместе в единый лист.

Вы можете свободно перемещаться внутри такого конденсатора от одной обкладки к другой в любом направлении.

Мысленно можно представить, что там где изображены силовые линии, кто-то закрепил балки из сухого дерева, а на местах эквипотенциальных линий установлены лестницы из того же материала. В итоге вы сможете свободно перемещаться в таком пространстве внутри конденсатора.

Если у вас хватит силы воображения, вы сможете представить такую конструкцию без проблем. Размер может быть любой, но при условии, что протяженность и высота обкладок во много раз больше чем расстояние между обкладками.

Электрическое поле полностью заряженного конденсатора в нашем случае будет статическим, то есть неизменным во времени, его характеристики не меняются с течением времени. Что мы имеем? У нас есть две обкладки обладающие некоторым количеством заряда равной величины, но противоположного знака.

Эти обкладки будут притягиваться к друг другу в соответствии с Законом Кулона, но эта электрическая сила скомпенсирована тем, что обкладки прочно закреплены на стенах воображаемых зданий.

Картина электрического поля такого конденсатора представлена силовыми и эквипотенциальными линиями, которые обозначены материальными предметами такими как деревянные балки и лестницы. Вы можете свободно путешествовать внутри такого конденсатора и выполнять необходимые измерения.

Ни о каком электрическом токе, а тем более о силе тока речи здесь не идет, потому как нет свободных носителей заряда.

Опытный электрик может поинтересоваться, а какое напряжение будет на таком конденсаторе? Это закономерный и справедливый вопрос, но нам следует разобраться что такое это самое напряжение. Тут нам следует вспомнить о пробном заряде, который использовался для объяснения напряженности электрического поля.

Предположим, что такой заряд появился и он может свободно перемещаться в пространстве между обкладками конденсатора. Что же это может быть? Представьте, что вы являетесь тем самым пробным зарядом и испытываете на себе дальнодействие электрических сил.

Разумеется, в реальной жизни такое маловероятно, но в нашем мысленном эксперименте такое вполне допустимо.

Физическая работа пробного заряда в электрическом поле

Итак, вы превратились в пробный электрический зарядq во много раз меньший чем заряд Q на обкладках конденсатора и начали свое путешествие между обкладок конденсатора. При этом вы будете испытывать действие кулоновых сил.

Допустим, что вы являетесь отрицательно заряженной частицей подобно электрону, тогда вас будет притягивать в сторону обкладки +Q, и вас будет отталкивать от обкладки с зарядом -Q.

Чем ближе вы будете к одной из обкладок, тем сильнее вы будете испытывать ее силовое действие.

Предположим, что вы вошли в конденсатор со стороны обкладки -Q и вас тут же начало отталкивать от нее в сторону обкладки +Q. Вы не стали сопротивляться такому воздействию и решили не противится природе и двигаться в полном согласии с влечением.

Для этих целей как раз удобно расположены балки и лестницы, по которым вы можете свободно добраться до обкладки +Q любым маршрутом. Так как на вас действуют электрическая кулоновская сила, то вы начинаете свободно набирать скорость, словно вас несет ветром.

В итоге вы преодолели расстояние по балке от одной лестницы до другой в направлении от точки A к точке B (смотрите рисунок выше). Лестницы — это эквипотенциальные линии, и соответственно, вы преодолели расстояние от одного значения потенциала к другому.

В нашем случае вы двигались от того потенциала, который для вас больший по величине, к тому, что меньше. Если же вы были бы зарядом другого знака, то есть +q, тогда потенциалы поменяли бы свои знаки и больший стал бы меньшим, а меньший большим. Математически это означает умножение потенциалов на -1.

На вас действовала сила и вы переместились из точки A в точку B, другими словами вы двигались от потенциалаφa (большего) к потенциалуφb (меньшему).

Это подобно тому, как если бы вы плыли по течению реки на плоту, когда вам не нужно грести веслами и не требуется мотора для движения. Можно сказать, что вами совершена механическая работа, которая является вычисляется как произведение силы на расстояние.

Совершив такое перемещение, вы потеряли часть потенциальной энергии, которая перешла в кинетическую (скорость вашего движения), а затем выделилась вероятно в виде тепла при торможении.

Проделав обратный путь из точки B в точку A, вы будете двигаться как бы против течения, вам придется затратить энергию, грести веслами, использовать мотор и т. п. Переместившись обратно вы увеличите свою потенциальную энергию, потому как переместитесь в точку с большим потенциалом и ваше энергетическое состояние увеличится.

Разность этих двух потенциалов φa и φb и будет являться электрическим напряжением.

Это равнозначные понятия, но в практической электротехнике чаще всего употребляют выражение не разность потенциалов, а напряжение.

При рассмотрении электрических цепей употребляют такое выражение как падение напряжения на участке цепи, а для источников электричество та же самая разность потенциалов определяется как электродвижущая сила (ЭДС).

Разность потенциалов Δφ=φ1-φ2 всегда показывает какую работу A может совершить носитель заряда q при перемещении этого заряда из точки с одним потенциалом φ1 в точку с другим потенциалом φ2. При вычислении надо иметь в виду, что потенциалы могут быть как со знаком плюс, так и со знаком минус.

Если заряду для такого перемещения требуется затратить энергию, а значит увеличить свой потенциал, то тогда работа А будет со знаком (-), а если носитель заряда перемещается из области высокого потенциала в область с низким потенциалом, тогда происходит выделение энергии и работа А будет со знаком (+). Таким образом электрическое напряжение — это энергетическая характеристика электрического поля и представляет собой разность потенциалов Δφ. Это значит, что принципиально неверно утверждать, что напряжение — это потенциал. Электрическое напряжение – это всегда разность потенциалов и она возможна только между двумя точками электрического поля. Если имеется одна точка в пространстве электрического поля, тогда уместно говорить только о потенциале этой точки, но никак ни о ее напряжении.

Необходимо совершенно ясно представлять в чем заключаются различия между такими понятиями как: напряженность электрического поля E, потенциал φ, и, конечно, разность потенциалов — электрическое напряжение. Поняв эти различия, будет совершенно легко разобраться с тем, что такое электрический ток.

Единицы измерения электрического напряжения

Точно также как и потенциал электрического поля, электрическое напряжение измеряется в Вольтах и часто обозначается либо символом U, либо символом V.

Чему равен 1 Вольт? Он равен работе в 1 Джоуль, которую совершает заряд в 1 Кулон.

Таким образом, если разность потенциалов равна скажем 12 Вольт, и эту разность (эквипотенциальные линии и поверхности) преодолел заряд, допустим в 2 Кулона, то следует говорить, что была совершена работа 24 Джоуля (12 Вольт умноженные на 2 Кулона).

Когда в электрических цепях существует электрический ток, то происходит движение носителей зарядов вдоль силовых линий электрического поля (направление зависит от знака), источником которого может быть электрогенератор или химический аккумулятор, то на участках цепи происходит падение напряжения (потенциала) и выделяется энергия. В источнике тока происходит обратное, там затрачивается энергия (или была затрачена) на создание ЭДС.

Дата: 01.05.2015

© Valentin Grigoryev (Валентин Григорьев)

Источник: http://electricity-automation.com/page/elektricheskoye-napryazheniye

III. Основы электродинамики

Разность потенциалов обозначение и единица измерения. A. Напряжение

Рассмотрим ситуацию: заряд q0 попадает в электростатическое поле. Это электростатическое поле тоже создается каким-то заряженным телом или системой тел, но нас это не интересует. На заряд q0 со стороны поля действует сила, которая может совершать работу и перемещать этот заряд в поле.

Работа электростатического поля не зависит от траектории. Работа поля при перемещении заряда по замкнутой траектории равна нулю. По этой причине силы электростатического поля называются консервативными, а само поле называется потенциальным.

Потенциал

Система “заряд – электростатическое поле” или “заряд – заряд” обладает потенциальной энергией, подобно тому, как система “гравитационное поле – тело” обладает потенциальной энергией.

Физическая скалярная величина, характеризующая энергетическое состояние поля называется потенциалом данной точки поля. В поле помещается заряд q, он обладает потенциальной энергией W. Потенциал – это характеристика электростатического поля.

Вспомним потенциальную энергию в механике. Потенциальная энергия равна нулю, когда тело находится на земле. А когда тело поднимают на некоторую высоту, то говорят, что тело обладает потенциальной энергией.

Касательно потенциальной энергии в электричестве, то здесь нет нулевого уровня потенциальной энергии. Его выбирают произвольно. Поэтому потенциал является относительной физической величиной.

В механике тела стремятся занять положение с наименьшей потенциальной энергией. В электричестве же под действием сил поля положительно заряженное тело стремится переместится из точки с более высоким потенциалом в точку с более низким потенциалом, а отрицательно заряженное тело – наоборот.

Потенциальная энергия поля – это работа, которую выполняет электростатическая сила при перемещении заряда из данной точки поля в точку с нулевым потенциалом.

Рассмотрим частный случай, когда электростатическое поле создается электрическим зарядом Q. Для исследования потенциала такого поля нет необходимости в него вносить заряд q. Можно высчитать потенциал любой точки такого поля, находящейся на расстоянии r от заряда Q.

Диэлектрическая проницаемость среды имеет известное значение (табличное), характеризует среду, в которой существует поле. Для воздуха она равна единице.

Разность потенциалов

Работа поля по перемещению заряда из одной точки в другую, называется разностью потенциалов

Эту формулу можно представить в ином виде

Эквипотенциальная поверхность (линия) – поверхность равного потенциала. Работа по перемещению заряда вдоль эквипотенциальной поверхности равна нулю.

Напряжение

Разность потенциалов называют еще электрическим напряжением при условии, что сторонние силы не действуют или их действием можно пренебречь.

Напряжение между двумя точками в однородном электрическом поле, расположенными по одной линии напряженности, равно произведению модуля вектора напряженности поля на расстояние между этими точками.

От величины напряжения зависит ток в цепи и энергия заряженной частицы.

Принцип суперпозиции

Потенциал поля, созданного несколькими зарядами, равен алгебраической (с учетом знака потенциала) сумме потенциалов полей каждого поля в отдельности

Как определить знак потенциала

При решении задач возникает много путаницы при определении знака потенциала, разности потенциалов, работы.

На рисунке изображены линии напряженности. В какой точке поля потенциал больше?

Верный ответ – точка 1. Вспомним, что линии напряженности начинаются на положительном заряде, а значит положительный заряд находится слева, следовательно максимальным потенциалом обладает крайняя левая точка.

Если происходит исследование поля, которое создается отрицательным зарядом, то потенциал поля вблизи заряда имеет отрицательное значение, в этом легко убедиться, если в формулу подставить заряд со знаком “минус”. Чем дальше от отрицательного заряда, тем потенциал поля больше.

Если происходит перемещение положительного заряда вдоль линий напряженности, то разность потенциалов и работа являются положительными. Если вдоль линий напряженности происходит перемещение отрицательного заряда, то разность потенциалов имеет знак “+”, работа имеет знак “-“.

Порассуждайте самостоятельно отрицательные или положительные значения будут принимать работа и разность потенциалов, если заряд перемещать в обратном направлении относительно линий напряженности.

Зависимость напряженности и потенциала от расстояния

Потенциал поля, созданного равномерно заряженной сферой радиусом R и зарядом q на расстоянии r от центра сферы, равен

Напряжение в природе

Напряжение в клетках сетчатки глаза при попадания в них света около 0,01 В. Напряжение в телефонных сетях может достигать 60 В.

Электрический угорь способен создавать напряжение до 650 В.

Энергия взаимодействия зарядов*

Из определения потенциала следует, что потенциальная энергия электростатического взаимодействия двух зарядов q1 и q2, находящихся на расстоянии r друг от друга, численно равна работе, которая совершается при перемещении точечного заряда q2 из бесконечности в данную точку поля, созданного зарядом q1

Аналогично Тогда энергия взаимодействия двух точечных зарядов

Энергия взаимодействия n зарядов

Источник: http://fizmat.by/kursy/jelektrichestvo/potencial

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.