Расчет токов кз в именованных единицах. Расчет токов короткого замыкания

Расчет токов КЗ в именованных единицах

Расчет токов кз в именованных единицах. Расчет токов короткого замыкания

< Предыдущая СОДЕРЖАНИЕ Следующая >

Перейти к загрузке файла

Для расчета токов короткого замыкания необходимо определить параметры схемы замещения системы электроснабжения с учетом величин принятых напряжений.Принимаем значения базового напряжения и базовой мощности:ЭДС питающей сетиСверхпереходное ЭДС синхронных компенсаторовРассчитываем параметры схемы замещения энергосистемыПараметры одной цепи воздушной линии ВЛ-1Рассчитываем параметры схемы замещения трансформаторов АТ-1 и АТ-2:Параметры одной цепи воздушной линии ВЛ-2Рассчитываем параметры схемы замещения трансформаторов Т-1 и Т-2. Т.к. трансформатор трехобмоточный, определяем сопротивления каждой из обмотокРассчитываем параметры схемы замещения реакторов Р-1 и Р-2:Параметры одной цепи кабельной линии КЛ-1Параметры одной цепи воздушной линии ВЛ-3 Рассчитываем параметры схемы замещения трансформаторов Т3 и Т4:

Параметры одной цепи кабельной линии КЛ-2

Рассчитываем параметры схемы замещения синхронных машин:

Рассчитываем величину тока КЗ в точке К1. Для расчета необходимо преобразование схемы.

Установившееся значение тока КЗ в точке К-1

Определяем характерный ударный коэффициент для заданной точки системы:

Сверхпереходное значение тока КЗ

Рассчитываем величину тока КЗ в точке К2.

Установившееся значение тока КЗ в точке К-2

Рассчитываем величину тока КЗ в точке К3.

Установившееся значение тока КЗ в точке К3.

Рассчитываем величину тока КЗ в точке К4.

Установившееся значение тока КЗ в точке К4

Расчет с использованием точных напряжений

Для расчета токов короткого замыкания необходимо определить параметры схемы замещения системы электроснабжения с учетом величин принятых напряжений.

Параметры одной цепи воздушной линии ВЛ-1

Параметры одной цепи воздушной линии ВЛ-2

Рассчитываем параметры схемы замещения реакторов Р-1 и Р-2:

Параметры одной цепи кабельной линии КЛ-1

Параметры одной цепи воздушной линии ВЛ-3

Параметры одной цепи кабельной линии КЛ-2

Рассчитываем величину тока КЗ в точке К1. Для расчета необходимо преобразование схемы.

Установившееся значение тока КЗ в точке К-1

Определяем характерный ударный коэффициент для заданной точки системы:

Сверхпереходное значение тока КЗ

Рассчитываем величину тока КЗ в точке К2.

Установившееся значение тока КЗ в точке К-2

Рассчитываем величину тока КЗ в точке К3.

Установившееся значение тока КЗ в точке К3.

Рассчитываем величину тока КЗ в точке К4.

Установившееся значение тока КЗ в точке К4

В работе был произведен расчет токов короткого замыкания в относительных и именованных единицах с использованием средних и точных напряжений. Результаты расчета приведены в табл. 3.

Таблица 3. Результаты расчетов токов КЗ, кА

К1К2К3К4iу К1
Относительные единицы. Средние напряжения0,902751,39621,36142,6929
Относительные единицы. Точные напряжения0,936641,4191,38122,8593
Именованные единицы. Средние напряжения0,902751,39621,36142,69292,1704
Именованные единицы. Точные напряжения0,936641,4191,38122,85932,2518
Перейти к загрузке файла
1. Справочник по проектированию электрических систем. / Под редакцией С.С. Рокотяна и И.М. Шапиро. – М.: Энергия, 1971. – 248 с.;2. Рожкова Л.Д., Козулин B.C. Электрооборудование станций и подстанций. – М.: Энергия, 1980. – 599 с.;3. Справочник по проектированию электроснабжения/ Под редакцией Ю.Г. Барыбина, JI.E. Фёдорова, М.Г. Зименкова, А.Г. Смирнова. – М.: Энергоатомиздат, 1990. – 576 с.;4. Heклeпaeв Б.Н. Электрическая часть электростанций и подстанций. – М.: Энергоатомиздат, 1986. – 640 с.;5. Коновалова Л.Л., Рожкова Л.Д. Электроснабжение промышленных предприятий и установок. – М.: Энергоатомиздат, 1989. – 528 с.

 

Источник: https://studbooks.net/1859887/matematika_himiya_fizika/raschet_tokov_imenovannyh_edinitsah

Как рассчитать ток короткого замыкания

Расчет токов кз в именованных единицах. Расчет токов короткого замыкания

Различные неисправности и аварии в электрических сетях способны причинить серьезный вред не только оборудованию, но и обслуживающему персоналу.

Наибольшие неприятности доставляют короткие замыкания, периодически возникающие в домашних сетях, в сложных схемах трансформаторных подстанций и электроустановок, питающих цепях, подключенных к мощному производственному оборудованию.

В связи с этим, на стадии проектирования выполняется расчет токов короткого замыкания, позволяющий предотвратить возникновение аварийного режима, и не допустить серьезных негативных последствий.

Для чего рассчитываются токи КЗ

Проектируя энергетическую систему, инженеры пользуются различными компьютерными программами, справочниками, графиками и таблицами. С помощью этих средств анализируется работа схемы в режиме холостого хода, рассчитываются токи при номинальной нагрузке и в аварийных ситуациях.

Особенно опасными считаются возможные аварии, при которых возникают неисправности, наносящие оборудованию непоправимый вред.

Наиболее часто возникают ситуации, когда проводники с разными потенциалами начинают контактировать между собой, вызывая режим короткого замыкания трансформатора.

При этом, токопроводящие детали и предметы, послужившие причиной замыкания, обладают минимальным электрическим сопротивлением.

Основным параметром такого режима является ток короткого замыкания. Его появление связано с несколькими причинами:

  • Нарушения работы защитных автоматических устройств.
  • Техническое старение оборудования, вызывающее повреждения изоляции и короткое замыкание.
  • Удары молний, вызывающие высокое напряжение и другие воздействия природной стихии.
  • Ошибки, допущенные обслуживающим персоналом, неспособным определить ток.

Каждая электрическая схема создается под определенную номинальную нагрузку. Ток КЗ многократно превышает ее, создает высокую температуру, выжигающую наиболее слабые места в сети и оборудовании. Все заканчивается возгоранием и полным разрушением. Одновременно элементы схемы подвергаются механическим воздействиям.

Во избежание подобных ситуаций в процессе эксплуатации, еще во время проектирования принимаются меры специального характера.

В первую очередь выполняются теоретический расчет токов короткого замыкания, определяющие вероятность их появления и величину.

Полученные данные применяются в дальнейшем проектировании, а также при подборе силового оборудования и элементов защиты. Степень точности расчетов может быть разной, в зависимости от уровня надежности создаваемой защиты.

Исходные данные и критерии для расчетов

Напряжение, используемое в сети, бывает постоянным, переменным, с импульсной, синусоидальной и другой конфигурацией. Аварийные токи, случайно созданные любым из этих напряжений, полностью повторяют начальную форму, которая может изменяться под действием сопротивления или других факторов.

В первую очередь учитывается закон Ома, определяемый формулой I = U/R. Его принципы совершенно одинаковы как для номинальных нагрузок, так и для аварийных ситуаций, с небольшими отличиями.

В первом случае показатели напряжения и сопротивления находятся в стабильном состоянии, а их изменения не выходят за пределы нормативных данных. В аварийном режиме эти процессы проходят стихийно, под влиянием случайных факторов.

Поэтому и требуется расчет тока по специальным методикам.

Не менее важны показатели мощности источника напряжения. Данный критерий позволяет сделать оценку и вычислить энергетические возможности для разрушений, причиняемых токами коротких замыканий.

Одновременно определяется величина этих токов и продолжительность действия. Кроме того, учитывается протяженность электрической цепи, количество линий и подключенных потребителей, существенно повышающих сопротивление.

Однако, при слишком большой мощности, даже самая надежная схема не выдержит нагрузки и сгорит.

Методы расчетов зависит от конфигурации конкретной электрической схемы. В первую очередь, это подводка питания, выполняемая разными способами.

В бытовых сетях на 220 В обычно используется фаза и ноль, постоянное напряжение подается от плюсовой и минусовой клеммы источника, а трехфазный ток подается по отдельной схеме.

Изоляция проводников и токоведущих частей может быть нарушена в любом из этих вариантов, и в поврежденных местах начнут протекать токи короткого замыкания.

Замыкание случается одновременно между тремя или двумя фазами, между фазой и нулем или землей, между двумя или тремя фазами и землей. Каждый из этих режимов учитывается при составлении проекта.

Большое значение имеет электрическое сопротивление цепи. Оно зависит от протяженности линии от источника питания, особенно постоянного, до точки КЗ, отсюда и его возможности по ограничению тока.

К основному добавляются индуктивные и емкостные сопротивления, присутствующие в обмотках катушек, трансформаторов и в обкладках конденсаторов.

Они участвуют в формировании апериодических составляющих, вносят изменения в основные параметры.

Проведение расчетов

Для выполнения расчетов трёхфазного и однофазного тока привлекаются квалифицированные специалисты. Они отвечают не только за математическую часть, но и за дальнейшее поведение рассчитанной схемы в условиях эксплуатации.

Вычисления, сделанные в домашних условиях, требуют дополнительной проверки, чтобы исключить вероятность ошибок.

До начала расчетов начинающие электрики должны изучить основные понятия электричества, свойства проводников и диэлектриков, роль и значение надежной изоляции.

Все вычисления, в том числе затрагивающие трехфазное оборудование, выполняются по специальным методикам, включающим в себя различные формулы.

Следует обязательно учесть ряд особенностей:

  • Все трехфазные системы условно относятся к симметричным.
  • Питание, подведенное к трансформатору, считается неизменной величиной, приравненной к его номиналу.
  • Сила тока принимает максимальное значение в момент возникновения аварийного режима. Потребуется расчет ударного тока короткого замыкания.
  • Влияние ЭДС источника питания, расположенного на большом расстоянии от места появления короткого замыкания.

Параметры ТКЗ при необходимости дополняются результирующим сопротивлением проводников. С этой целью показатели мощности приводятся к единому значению.

Для таких расчетов нежелательно использовать обычные формулы, изучаемые на курсе физики. Здесь вполне возможны ошибки из-за разных номиналов напряжения на различных участках цепи в момент начала аварийного режима.

Единая базовая мощность делает расчеты более простыми, существенно повышая точность результатов.

Номинальное напряжение, используемое при вычислениях, берется с увеличением на 5%. В сетях 380 вольт этот показатель составит 400В, а при 220В итоговое значение будет 231В.

Как вычислить ток при трехфазном замыкании

Расчет тока трехфазного короткого замыкания необходимо рассмотреть более подробно, учитывая все особенности и сопутствующие факторы этого процесса.

В проводнике, попавшем под действие короткого замыкания, не будет мгновенного изменения силы тока. Его значение нарастает постепенно, в соответствии с установленными физическими законами.

Существуют специальные методики на расчет трехфазного тока, для которых требуются данные всех основных величин, определяемые математическим путем.

Полученные результаты затем использует специальная формула.

Одна из формул выглядит следующим образом: Iкз = Uc/√3*xрез = Uc/√3*(хсист + хвн). В ней Uc – величина напряжения на шинах, xрез – результативное или общее сопротивление. Оно состоит из хсист – соотношения сопротивления всей системы и шин источника питания, и хвн – сопротивления на участке между шинами и точкой КЗ.

Если какой-либо показатель отсутствует, его можно рассчитывать по дополнительным формулам или с помощью специальных компьютерных программ. При выполнении расчетов в сложных разветвленных сетях, они преобразуются в схемы замещения. Каждая отдельно взятая схема представлена в виде источника электроэнергии и одного сопротивления. Процесс упрощения происходит в следующем порядке:

  • Складываются все показатели сопротивлений, подключенных параллельно.
  • То же самое выполняется в отношении последовательно подключенных сопротивлений.
  • Величина результирующего сопротивления в относительных единицах определяется сложением всех сопротивлений с параллельным и последовательным подключением.

Современная вычислительная техника предоставляет возможность выполнения сложнейших операций буквально за несколько секунд. Это дает возможность получения точных результатов, используемых в проектировании.

Расчеты токов КЗ в однофазных сетях

В однофазных электрических сетях расчет токов короткого замыкания выполняется по упрощенной методике. Это связано с незначительным энергопотреблением электроприборов на 220В. То есть, надежно защитить частный дом или квартиру вполне возможно с помощью автоматических выключателей на 25А.

Примерно рассчитать ток однофазного короткого замыкания можно по формуле № 1, в которой Ik будет однофазным током КЗ, а Uf – фазное напряжение.

Параметры Zt и Zc представляют собой сопротивление трансформатора в момент КЗ и сопротивление между фазой и нулем. Погрешность вычислений с использованием этой формулы составляет примерно 10%.

Этих данных вполне достаточно, чтобы спланировать надежную защиту сети.

Основные сложности могут возникнуть при решении задачи, как определить параметр Zc. Однако, при наличии данных о переходных сопротивлениях и характеристиках проводника, величина сопротивления между фазным и нулевым проводом достаточно легко находится по формуле № 2.

В ней параметры rf и rn являются, соответственно, активными сопротивлениями фазы и нуля (Ом). Внутренние индуктивные сопротивления фазного и нулевого проводников обозначаются как xf и xn (Ом).

Еще две величины – ra и x’ являются суммарным активным сопротивлением контактов цепочки фаза-нуль и внешним индуктивным сопротивлением этой же цепи.

При вычислении токов однофазного КЗ, расчетная схема должна выполняться в определенной последовательности:

  • Вначале нужно установить параметры источника питания.
  • Определить характеристики проводников, используемых в цепи.
  • Слишком разветвленную схему нужно упростить путем замещения сложных компонентов простыми. С этой целью составляется схема замещения для расчета токов короткого замыкания.
  • Найти величину полного сопротивления на участке фаза-ноль.
  • При отсутствии технической документации определяется полное сопротивление источника питания, измеряемое в относительных единицах.

Все полученные значения подставляются в формулу, после чего вычисленным результатом можно пользоваться при составлении проектов.

Источник: https://electric-220.ru/news/kak_rasschitat_tok_korotkogo_zamykanija/2019-08-29-1738

Расчет токов короткого замыкания

Расчет токов кз в именованных единицах. Расчет токов короткого замыкания

Короткое замыкание между проводниками является опаснейшим явлением, как в электрической сети частного домовладения, так и в сложных разводках подстанций и питающих цепей мощного производственного оборудования.

Короткое замыкание может стать причиной пожара и выхода из строя дорогостоящих электроприборов, поэтому расчёт токов короткого замыкания, является обязательным этапом перед осуществлением прокладки кабелей для различных потребителей электричества.

Кто занимается вычислением КЗ

Расчёт КЗ, производится квалифицированными специалистами, которые не только производят необходимые вычисления, но и несут ответственность за дальнейшую эксплуатацию электрического оборудования.

Домашние электрики также могут осуществить данные вычисления, но только при наличии начальных знаний о природе электричества, свойствах проводников и о роли диэлектриков, в их надёжной изоляции друг от друга.

При этом, полученный результат значения короткого замыкания, перед проведением электротехнических работ, необходимо перепроверить самостоятельно, либо воспользоваться услугами специализированных фирм, которые осуществляют данные вычисления на платной основе.

Как рассчитать ток короткого замыкания используя специальные формулы, будет подробно описано далее.

Особенности расчёта

Расчёт токов трёхфазного оборудования производится с применением специальных формул.

Если расчёт тока трёхфазного короткого замыкания, необходимо сделать для электрических сетей напряжением до 1000 В, то необходимо учитывать следующие нюансы при проведении расчётов:

  1. Трёхфазная система должна считаться симметричной.
  2. Питание трансформатора принимается за неизменяемую величину, равную его номинальному значению.
  3. Момент возникновения КЗ принято считать при максимальном значении силы тока.
  4. ЭДС источников питания, удалённых на значительное расстояния от участка электрической сети, где происходит КЗ.

Также при вычислении параметров КЗ необходимо правильно посчитать результирующее сопротивление проводника, но делать это необходимо через приведение единого значения мощности.

Если производить расчёт сопротивления стандартными формулами известными из курса физики, то можно допустить ошибки, по причине неодинакового номинального напряжения в момент возникновения короткого замыкания для различных участков электрической цепи. Выбор такой базисной мощности позволяет значительно упростить расчёты, и значительно повысить их точность.

Напряжение, при вычислении тока короткого замыкания также принято выбирать не исходя из номинального значения, а с превышением данного показателя на 5%. Например для электрической сети 380 В, базисное напряжение для расчёта токов короткого замыкания составит 0,4 кВ.

Для сети переменного тока наприряжением 220 В, базисное напряжение будет равно 231 В.

Формулы вычисления трёхфазного замыкания

Расчёт токов коротких замыканий в электроэнергетических системах трёхфазного электричества производится с учётом особенности возникновения данного процесса.

Из-за проявления индуктивности проводника, в котором происходит короткое замыкание, сила КЗ изменяется не мгновенно, а происходит нарастание данной величины по определённым законам. Чтобы методика расчёта токов короткого замыкания позволила произвести высокоточные вычисления, необходимо высчитать все основные величины вносимые в расчётные формулы.

Часто для этой цели требуется воспользоваться дополнительными формулами или специальным программным обеспечением. Современные возможности вычислительной техники, позволяют осуществлять сложнейшие операций в считанные секунды.

Методы расчёта токов короткого замыкания могут быть расширены применением специального программного обеспечения. В данном случае, может быть использована компьютерная программа, которая может быть написана любым квалифицированным программистом.

Если вычисление параметров КЗ в трёхфазной сети осуществляется вручную, то в для получения точного результата этого значения применяется формула:

где:

Хвн — сопротивление между точкой короткого замыкания и шинами.Хсист — сопротивление всей системы по отношению к шинам источника.

Uс — напряжение на шинах системы.

Если какой-либо показатель отсутствует при проведении расчётов, то его можно высчитать применив для этого дополнительные формулы, или следует применить специальные программы для компьютера.

В том случае, когда расчёт КЗ, необходимо произвести для сложной разветвлённой сети, производится преобразование схемы замещения. Для максимально упрощения вычислений схема представляется с одним сопротивлением и источником электричества.

Для упрощения схемы необходимо:

  1. Сложить все показатели параллельно подключённого сопротивления электрических цепей.
  2. Сложить последовательно подключённые сопротивления.
  3. Вычислить результирующее сопротивлению, путём сложения всех параллельно и последовательно подключённых сопротивлений.

Расчёт однофазной сети

Расчет токов коротких замыканий в электроэнергетических системах однофазного напряжения допускает проведение упрощённых вычислений. Обычно, электроприборы тока однофазного не потребляют много электричества, и для надёжной защиты квартиры или дома от возникновения короткого замыкания, достаточно установить автоматический выключатель рассчитанный на величину срабатывания, равную 25 А.

Если требуется осуществить приблизительный расчёт однофазного короткого замыкания, то его производят по формуле:

гдеUf — напряжение фазы.Zt — сопротивление трансформатора, при возникновении КЗ.Zc — сопротивление между фазным и нулевым проводником.

Ik — однофазный ток короткого замыкания.

Вычисление параметров КЗ в однофазной цепи с использованием данной формулы производится с погрешностью до 10%, но в большинстве случаев этого достаточно для осуществления правильной защиты электрической сети.

Основным затруднением для получения данных рассчитанных по этой формуле, является сложность в получении значения Zc.

Если параметры проводника известны и переходные сопротивления также определены, то сопротивление между фазным и нулевым проводником рассчитывается по формуле:

где:rf — активное сопротивление фазного провода, Ом;rn — активное сопротивление нулевого провода, Ом;ra — суммарное активное сопротивление контактов цепи фаза-нуль, Ом;xf» — внутреннее индуктивное сопротивление фазного провода, Ом;xn» — внутреннее индуктивное сопротивление нулевого провода, Ом;

x’ — внешнее индуктивное сопротивление цепи фаза-нуль, Ом.

Таким образом подставляя известные значения в формулы приведённые выше, легко найдём ток короткого замыкания для однофазной сети.

Вычисление параметров КЗ в однофазной сети осуществляется в такой последовательности:

  1. Выяснится параметры питающего трансформатора или реактора.
  2. Определяются параметры используемого проводника.
  3. Если электрическая схема слишком разветвлена, то её следует упростить.
  4. Определяется полное сопротивление можду «фазой» и «0».
  5. Вычисляется полное сопротивление трансформатора или реактора, если данное значение нельзя получить из документации к источнику питания.
  6. Значения подставляются в формулу.

Если вся последовательность действий была проведена верно, то таким образом можно рассчитать силу тока при возникновении КЗ в однофазной сети.

Вычисление КЗ по паспортным данным

Значительно упрощается задача по расчёту КЗ, если имеются паспортные данные реактора или трансформатора. В этом случае достаточно номинальные значения электричества и напряжения подставить в расчётные формулы, чтобы получить значение тока КЗ.

Сила и мощность КЗ могут быть определены по следующим формулам:

В данной формуле значение Iном равно номинальному току электрического трансформатора или реактора.

Определение тока КЗ в сети неограниченной мощности

Если необходимо рассчитать КЗ в системе, где мощность источника электричества несоизмеримо выше суммарной мощности потребителей электричества, то величину напряжения можно условно считать неизменной.

В таких условиях мощность электричества будет равна бесконечности, а сопротивление проводника — нулю. Данные условия могут быть применены только к таким расчётным условиям, когда точка короткого замыкания удалена на значительное расстояние от источника электричества, а результирующее сопротивление цепи в десятки раз превышает сопротивление системы.

Для электрической сети неограниченной мощности сила электрической напряжённости рассчитывается по формуле:

Ik=Ib/Xрезгде:Ik — сила тока короткого замыкания;Ib — базисный ток;

Хрез — результирующее напряжения сети.

Подставив значение в формулу можно получить значение параметров КЗ в сети неограниченной мощности.

Руководящие указания по расчёту токов короткого замыкания, изложенные в данной статье, содержат основные принципы, по которым определяется сила тока в проводнике в момент образования этого опасного явления.

Если возникает сложность в проведении данных расчётов самостоятельно, то можно воспользоваться услугами профессиональных инженеров-электриков, которые проведут все необходимые вычисления.

Расчёт токов короткого замыкания и выбор электрооборудования по совету профессионалов позволит гарантировать бесперебойное и безопасное использование электрических сетей в частном доме или на производстве.

Предыдущая новость Следующая новость

Источник: https://EvoSnab.ru/elektrotehnika/kz/raschet-tokov-korotkogo-zamykanija

Расчет токов короткого замыкания (пример)

Расчет токов кз в именованных единицах. Расчет токов короткого замыкания

Здравствуйте, уважаемые читатели и посетители сайта «Заметки электрика».

У меня на сайте есть статья про короткое замыкание и его последствия. Я в ней приводил случаи из своей практики.

Так вот чтобы минимизировать последствия от подобных аварий и инцидентов, необходимо правильно выбирать электрооборудование. Но чтобы его правильно выбрать, нужно уметь  рассчитывать токикороткого замыкания.

В сегодняшней статье я покажу Вам как можно самостоятельно рассчитать ток короткого замыкания, или сокращенно ток к.з., на реальном примере.

Я понимаю, что многим из Вас нет необходимости производить расчеты, т.к. обычно этим занимаются, либо проектанты в организациях (фирмах), имеющих лицензию, либо студенты, которые пишут очередной курсовой или дипломный проект. Особенно понимаю последних, т.к.

сам будучи студентом (в далеком двух тысячном году), очень жалел, что в сети не было подобных сайтов. Также данная публикация будет полезна энергетикам и электрикам для поднятия уровня саморазвития, или чтобы освежить в памяти когда-то прошедший материал.

Кстати, я уже приводил пример расчета защиты асинхронного двигателя. Кому интересно, то переходите по ссылочке и читайте.

Итак, перейдем к делу. Несколько дней назад у нас на предприятии случился пожар на кабельной трассе около цеховой сборки №10. Выгорел практически полностью кабельный лоток со всеми там идущими силовыми и контрольными кабелями. Вот фото с места происшествия.

Сильно вдаваться в «разбор полетов» я не буду, но у моего руководства возник вопрос о срабатывании вводного автоматического выключателя и соответствие его номинального тока для защищаемой линии. Простыми словами скажу, что их интересовала величина тока короткого замыкания в конце вводной силовой кабельной линии, т.е. в том месте, где случился пожар.

Естественно, что никакой проектной документации у цеховых электриков по расчетам токов к.з. на эту линию не нашлось, и мне пришлось самому производить весь расчет, который я выкладываю в общий доступ.

Сбор данных для расчета токов короткого замыкания

Силовая сборка №10, около которой случился пожар, питается через автоматический выключатель А3144 600 (А) медным кабелем СБГ (3х150) от понижающего трансформатора №1 10/0,5 (кВ) мощностью 1000 (кВА).

В скобках около марки кабеля указано количество жил и их сечение (как рассчитать сечение кабеля). 

Не удивляйтесь, у нас на предприятии еще много действующих подстанций с изолированной нейтралью на 500 (В) и даже на 220 (В).

Скоро буду писать статью о том, как в сеть 220 (В) и 500 (В) с изолированной нейтралью установить счетчик. Не пропустите выход новой статьи — подпишитесь на получение новостей.

Понижающий трансформатор 10/0,5 (кВ) питается силовым кабелем ААШв (3х35) с высоковольтной распределительной подстанции № 20.

Некоторые уточнения для расчета тока короткого замыкания

Несколько слов хотелось бы сказать про сам процесс короткого замыкания. Во время короткого замыкания в цепи возникают переходные процессы, связанные с наличием в ней индуктивностей, препятствующих резкому изменению тока. В связи с этим ток к.з. во время переходного процесса можно разделить на 2 составляющие:

  • периодическая (появляется в начальный момент и не снижается, пока электроустановка не отключится от защиты)
  • апериодическая (появляется в начальный момент и быстро снижается до нуля после завершения переходного процесса)

Ток к.з. я буду расчитывать по РД 153-34.0-20.527-98.

В этом нормативном документе сказано, что расчет тока короткого замыкания допускается проводить приближенно, но при условии, что погрешность расчетов не составит больше 10%.

Расчет токов короткого замыкания я буду проводить в относительных единицах. Значения элементов схемы приближенно приведу к базисным условиям с учетом коэффициента трансформации силового трансформатора.

Цель — это проверить вводной автоматический выключатель А3144 с номинальным током 600 (А) на коммутационную способность. Для этого мне нужно определить ток трехфазного и двухфазного короткого замыкания в конце силовой кабельной линии.

Пример расчета токов короткого замыкания

Принимаем за основную ступень напряжение 10,5 (кВ) и задаемся базисной мощностью энергосистемы:

  • базисная мощность энергосистемы Sб = 100 (МВА)
  • базисное напряжение Uб1 = 10,5 (кВ)
  • ток короткого замыкания на сборных шинах подстанции №20 (по проекту) Iкз = 9,037 (кА)

Составляем расчетную схему электроснабжения.

На этой схеме указываем все элементы электрической цепи и их параметры. Также не забываем указать точку, в которой нам нужно найти ток короткого замыкания. На рисунке выше я ее забыл указать, поэтому объясню словами. Она находится сразу же после низковольтного кабеля СБГ (3х150) перед сборкой №10.

Затем составим схему замещения, заменив все элементы вышеприведенной схемы на активные и реактивные сопротивления.

При расчете периодической составляющей тока короткого замыкания допускается активное сопротивление кабельных и воздушных линий не учитывать. Для более точного расчета активное сопротивление на кабельных линиях я учту. 

Зная, базисные мощности и напряжения, найдем базисные токи для каждой ступени трансформации:

Теперь нам нужно найти реактивное и активное сопротивление каждого элемента цепи в относительных единицах и вычислить общее эквивалентное сопротивление схемы замещения от источника питания (энергосистемы) до точки к.з. (выделена красной стрелкой).

Определим реактивное сопротивление эквивалентного источника (системы):

Определим реактивное сопротивление кабельной линии 10 (кВ):

  • Хо — удельное индуктивное сопротивление для кабеля ААШв (3х35) берем из справочника по электроснабжению и электрооборудованию А.А. Федорова, том 2, табл. 61.11 (измеряется в Ом/км)
  • l — длина кабельной линии (в километрах)

Определим активное сопротивление кабельной линии 10 (кВ):

  • Rо — удельное активное сопротивление для кабеля ААШв (3х35) берем из справочника по электроснабжению и электрооборудованию А.А. Федорова, том 2, табл. 61.11 (измеряется в Ом/км)
  • l — длина кабельной линии (в километрах)

Определим реактивное сопротивление двухобмоточного трансформатора 10/0,5 (кВ):

  • uк% — напряжение короткого замыкания трансформатора 10/0,5 (кВ) мощностью 1000 (кВА), берем из справочника по электроснабжению и электрооборудованию А.А. Федорова, табл. 27.6

Активным сопротивлением трансформатора я пренебрегаю, т.к. оно несоизмеримо мало по отношению к реактивному. 

Определим реактивное сопротивление кабельной линии 0,5 (кВ):

  • Хо — удельное сопротивление для кабеля СБГ (3х150) берем из справочника по электроснабжению и электрооборудованию А.А. Федорова, табл. 61.11 (измеряется в Ом/км)
  • l — длина кабельной линии (в километрах)

Определим активное сопротивление кабельной линии 0,5 (кВ):

  • Rо — удельное сопротивление для кабеля СБГ (3х150) берем из справочника по электроснабжению и электрооборудованию А.А. Федорова, табл. 61.11 (измеряется в Ом/км)
  • l — длина кабельной линии (в километрах)

Определим общее эквивалентное сопротивление от источника питания (энергосистемы) до точки к.з.:

Найдем периодическую составляющую тока трехфазного короткого замыкания:

Найдем периодическую составляющую тока двухфазного короткого замыкания:

Результаты расчета токов короткого замыкания

Итак, мы рассчитали ток двухфазного короткого замыкания в конце силовой кабельной линии напряжением 500 (В). Он составляет 10,766 (кА).

Вводной автоматический выключатель А3144 имеет номинальный ток 600 (А). Уставка электромагнитного расцепителя у него выставлена на 6000 (А) или 6 (кА). Поэтому можно сделать вывод, что при коротком замыкании в конце вводной кабельной линии (в моем примере по причине пожара) автомат уверенно сработал и отключил поврежденный участок цепи.

Еще полученные значения трехфазного и двухфазного токов можно применить для выбора уставок релейной защиты и автоматики.

В этой статье я не выполнил расчет на ударный ток при к.з. 

P.S. Вышеприведенный расчет был отправлен моему руководству. Для приближенного расчета он вполне сгодится. Конечно же низкую сторону можно было рассчитать более подробно, учитывая сопротивление контактов автоматического выключателя, контактных соединений кабельных наконечников к шинам, сопротивление дуги в месте замыкания и т.п. Об этом я как-нибудь напишу в другой раз.

Если Вам нужен более точный расчет, то можете воспользоваться специальными программами на ПК. Их в интернете множество.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:

Источник: http://zametkielectrika.ru/raschet-tokov-korotkogo-zamykaniya/

10. Пример расчета токов КЗ в сети напряжением 0,4 кВ

Расчет токов кз в именованных единицах. Расчет токов короткого замыкания
Категория: И.Л. Небрат “Расчеты токов короткого замыкания в сетях 0,4 кВ”

Расчет токов КЗ – трехфазных, двухфазных, однофазных в сети 0,4 кВ схемы, приведенной на рис. 7

Рис.8 Расчетная схема к примеру

         Необходимо рассчитать токи КЗ в сети 0,4 кВ собственных нужд электростанции. Расчет выполняется для проверки отключающей способности автоматических выключателей, проверки кабельных линий на термическую стойкость, а также для выбора уставок токовых катушек автоматических выключателей и проверки их чувствительности.

       С этой целью выполняются расчеты металлических и дуговых КЗ трехфазных, двухфазных и однофазных.

   Расчетная схема представлена на рис.7

       Расчет выполняется в именованных единицах, сопротивления расчетной схемы приводятся к напряжению 0,4 кВ и выражаются в миллиомах. Параметры элементов расчетной схемы приводятся в таблицах Приложения 1

       Расчеты выполняются в соответствии с методикой рекомендованной ГОСТ 28249-93 на расчеты токов КЗ в сетях напряжением до 1 кВ.

       Короткие замыкания рассчитываются на шинах 0,4 кВ РУ (точка К1) и на вторичной силовой сборке за кабелем КЛ1 (точка К2).

       В данном примере расчеты дуговых КЗ выполняются с использованием снижающего коэффициента КС , поэтому переходные сопротивления контактов, контактных соединений кабелей и шинопроводов в расчетных выражениях для определения суммарного активного сопротивления R∑ не учитываются, эти сопротивления учтены при построении характеристик зависимости коэффициента Кс от полного суммарного сопротивления до места К3, Кс = ∫(Z∑), полученных экспериментальным путем. Характеристики Кс = ∫(Z∑) приведены на рис. 6.

Трансформатор

ТС3-1000/6,0, схема соединения обмоток ∆/Y0

Sк=1000 кВ•А, UН ВН=0,4 кВ,

Uк=8%.

Сопротивления трансформатора, приведены к UН ВН=0,4 кВ, определяются по таблице 1 Приложения 1:

R1=R2=R0=1.9 мОм,

X1=X2=X0=12.65 мОм.

Шинопровод III 1

IIIМА-4-1600, длина 15м.

Удельное параметры шинопровода по данным таблицы II Приложения1

R1 уд=0,03 мОм/м

прямая последовательность

X1 уд =0,014мОм/м

R0 уд=0,037 мОм/м

нулевая последовательность

X0 уд =0,042мОм/м

Трансформаторы тока ТТ1

Удельные параметры трансформатора тока по данным таблицы 14 Приложения1:

Ктт=150/5,

R1=R0=0,33 мОм,

X1=X0=0.3 мОм.

Кабельная линия КЛ1

АВВГ- (3*185+1*70),

   =100м.

Удельные параметры кабеля по данным таблицы 7 Приложения 1:

R1 уд=0,208 мОм/м

прямая последовательность

X1 уд =0,063мОм/м

R0 уд=0,989 мОм/м

нулевая последовательность

X0 уд =0,244мОм/м

Автоматический выключатель АВ1

Тип “Электрон” , IН =1000А.

Из таблицы 13 Приложения 1 определяем сопротивления катушек АВ1:

Rкв= 0,25 мОм,

Хкв= 0,1 мОм.

Автоматический выключатель АВ2

Тип А3794С, Iн= 400А.

Из таблицы 13 Приложения 1 определяем сопротивления катушек АВ2:

Rкв= 0,65 мОм,

Хкв= 0,17 мОм.

Расчет параметров схемы замещения

Все сопротивления расчетной схемы приводятся к Uбаз= 0,4 кВ.

Система

Сопротивление системы учитывается индуктивным сопротивлением в схеме замещения прямой последовательности. По формуле (3)

Трансформатор

Для трансформатора со схемой соединения обмоток ∆/Y0 активные и индуктивные сопротивления обмоток одинаковы для всех трех последовательностей

R1Т= R2Т= R0Т=1,9 мОм,

X1Т= X2Т= X0Т=12,65 мОм.

Шинопровод III 1

Сопротивление шинопровода III 1 определяем по известным удельным сопротивлениям шинопровода и его длине:

R1Ш= R2Ш= 0,03•15=0,45 мОм;

X1Ш= X2Ш= 0,014•15=0,21 мОм;

R0Ш= 0,037•15=0,555 мОм;

X0Ш= 0,042•15=0,63 мОм.

   Двухфазное КЗ

   Ток металлического двухфазного КЗ определяется по формуле :

   Полное суммарное сопротивление до точки К1 при двухфазном КЗ определяется по формуле :

мОм

   Определяем ток двухфазного металлического КЗ

кА

проверяем                           кА

   Расчет дугового двухфазного КЗ :

   Определяем коэффициенты КС1 и КС2.

для мОм       КС1 = 0,68, а   КС2 = 0,6

   Определяем токи двухфазного дугового КЗ

                                        tКЗ » 0

     tКЗ> 0,05 с.

Однофазное К3

Ток металлического однофазного К3 IКм(1) определяется по формуле IКм(1) =

Полное суммарное сопротивление цепи до точки К1 при однофазном К3 определяем по формуле

;

Предварительно определяем суммарные активное и индуктивное сопротивления нулевой последовательности до точки К1 из схемы замещения на рис.10.

R0∑=1,9+0,555+0,25=2,7 мОм

   X0∑=12,65+0,63+0,1=13,38 мОм

Определяем полное сумарное сопротивление цепи для однофазного К3

мОм

Определяем ток однофазного металлического К3

кА

Расчет дугового однофазного К3:

Определяем коэффициенты Кс1 и Кс2.

Для =14,65 мОм   Кс1=0,66 , а Кс2=0,58.

Определяем токи однофазного дугового К3

=15,66•0,66=10,33 кА   tкз ≈0

=15,66•0,58=9,1 кА   tкз>0,05 с

Расчет токов короткого замыкания для точки К2.

Трехфазное К3

Определяем суммарные активное и индуктивное сопротивления до точки К2 в соответствии со схемой замещения на рис. 9.

R1∑=0,33+1,9+0,455+0,25+0,65+20,8=24,38 мОм

X1∑=1.6+0.3+12.65+0.21+0.1+0.17+6.3=21.33 мОм

             Суммарное сопротивление

мОм

Определяем ток однофазного металлического К3

кА

Определяем токи дугового К3.

В соответствии с графиком для мОм

Коэффициенты Кс1 и Кс2 соответственно равны 0,74 и 0,67.

Определяем токи дугового К3

=7,14•0,74=5,28 кА   tкз ≈0

=7,14•0,67=4,78 кА   tкз>0,05 с

Определяем ударный ток iу = Ку· ·

По отношению    Ку = 1,05, тогда

iу=1,05··7,14=10,6 кА.

Двухфазное К3

Для расчета двухфазного К3 в точке К2 определяем следующие величины.

Полное суммарное сопротивление до точки К3 для двухфазного К3

мОм.

Ток двухфазного металлического К3

По кривым на рис. 6 коэффициенты снижения Кс1 и Кс2 при =37,44 мОм соответственно равны 0,78 и 0,69.

Токи двухфазного дугового К3

=6,17•0,78=4,81 кА   tкз ≈0

=6,14•0,69=4,26кА  tкз>0,05 с

Однофазное К3

Для расчета однофазного К3 в точке К2 определяем следующие величины:

Суммарные активное и индуктивное сопротивления нулевой последовательности относительно точки К2 в соответствии со схемой замещения нулевой последовательности (рис. 10):

R0∑=1,9+0,555+0,25+0,65+98,9=102,25 мОм

X0∑=12,65+0,63+0,1+0,17+24,4=38 мОм.

Полное суммарное сопротивление до места К3 при однофазном К3

Ток однофазного металлического К3

кА.

Определяем токи дугового К3

По кривым на рис. 6 коэффициенты снижения Кс1 и Кс2 при =57,2 мОм соответственно равны 0,82 и 0,72.

=4,04•0,82=3,31 кА   tкз ≈0

=4,04•0,72=2,91кА   tкз>0,05 с

Все результаты расчетов токов К3 приведены в таблице 4, что представляется удобным для дальнейшего анализа, выбора уставок защитных аппаратов и проверки кабелей.

Результаты расчетов токов К3

Виды К3

Точка К3

IКМ

кА

IКД НАЧ

кА

IКД УСТ

кА

iУД

кА

IКМ

кА

IКД НАЧ

кА

IКД УСТ

кА

IКМ

кА

IКД НАЧ

кА

IКД УСТ

кА

К1

15,27

10,23

8,86

34,6

13,2

8,98

7,92

15,66

10,33

9,1

К2

7,14

5,28

4,78

10,6

6,17

4,81

4,26

4,04

3,31

2,91

Этот пример наглядно показывает, что аналитические методы расчетов токов К3 очень трудоемкий, особенно для электроустановок с большим количеством элементов 0,4 кВ.

Поэтому еще раз обращаем внимание на необходимости освоения и более широкого применения для практических расчетов компьютерных программ, в том числе, программа, которая разработана на кафедре РЗА ПЭИпк и успешно используется на многих энергообьектах (описание программы см. на стр. 3).

Источник: http://rza001.ru/komarov/11-knigi/nebrat/53-10-primer-rascheta-tokov-kz-v-seti-napryazheniem-04-kv

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.