Как считать примеры с дробями. Правила арифметических действий над обыкновенными дробям
Действия с дробями
- Как сократить дробь?
- Как привести дроби к общему знаменателю?
- Как сложить, вычесть, умножить или разделить дроби?
Тема этой статьи может показаться простой, ведь речь пойдет о вещах, которые должны быть известны с 5–6 класса. Однако многие старшеклассники и даже студенты неуверенно себя чувствуют, когда приходится работать с дробями.
В некоторых случаях человек ловко использует аппарат дифференциального исчисления для поиска экстремума, но потом не справляется со сравнением двух дробей при определении максимума функции.
Вычисление выражений вроде (414−2)⋅623(4 \frac{1}{4}-2)\cdot 6 \frac{2}{3}(441−2)⋅632 у многих вызывает сложности.
Для того чтобы уверенно себя чувствовать на экзамене, необходимо уметь выполнять все упражнения, встречающиеся в этой главе. Речь пойдет о сокращении дробей, а также их сложении, вычитании, умножении и делении.Если вы не очень уверенно себя чувствуете, когда речь заходит о различных видах дробей (обыкновенные, смешанные, десятичные и т.д.), или не помните, что такое числитель или знаменатель дроби, то прочитайте статью “Дроби – справочная информация”.
Сокращение дробей
Числитель и знаменатель дроби можно разделить или умножить на одно и то же число. Дробь, которую мы при этом получим, равна исходной дроби.
Когда мы делим числитель и знаменатель на одно и то же число, чтобы дробь стала проще, мы занимаемся сокращением дробей.
Сократим дробь 1015\frac{10}{15}1510.
Для этого разделим числитель и знаменатель дроби на 555.
1015=2⋅53⋅5=23\frac{10}{15}=\frac{2\cdot 5}{3\cdot 5}=\frac{2}{3}1510=3⋅52⋅5=32
Перед тем как приступать к действиям с дробями, их бывает полезно сократить. Также постарайтесь сокращать слишком страшные дроби, которые получаются во время промежуточных вычислений.
Чтобы сократить дробь ab\frac{a}{b}ba, нужно вычислить наибольший общий делитель НОД(a,b)\text{НОД}(a,b)НОД(a,b) и поделить на него числитель и знаменатель дроби.
Для того чтобы вычислить НОД\text{НОД}НОД двух чисел, используют алгоритм Евклида. Однако на практике гораздо проще постепенно делить (сокращать) числитель и знаменатель на общие делители, которые ищутся с помощью признаков делимости.
Например, можно заметить, что в дроби 2466\frac{24}{66}6624 числитель и знаменатель – четные числа. Поэтому на 222 эту дробь точно можно сократить: 2466=1233\frac{24}{66}=\frac{12}{33}6624=3312. Теперь можно увидеть, что оба числа делятся на 333. Сокращаем дальше: 1233=411\frac{12}{33}=\frac{4}{11}3312=114. Получили несократимую дробь.
Дробь ab\frac{a}{b}ba является несократимой, если НОД(a,b)=1\text{НОД}(a,b)=1НОД(a,b)=1.Сократите 3045\frac{30}{45}4530. В ответе запишите обыкновенную дробь (через / ).
Сократите 8517\frac{85}{17}1785.
Нет ничего проще, чем сложение дробей с одинаковым знаменателем.
Сложить 27\frac{2}{7}72 и 37\frac{3}{7}73 — это все равно, что сложить 222 куска торта, разрезанного на 777 частей, и 333 куска того же торта. Получится 2+3=52+3=52+3=5 кусков торта, или 57\frac{5}{7}75.
Вычислите 35−15\frac{3}{5}-\frac{1}{5}53−51. В ответе запишите обыкновенную дробь (через / ).
Сложение дробей с разными знаменателями — это уже задачка посложнее. Как можно сложить, например, кусок пиццы, порезанной на 555 частей, с куском пиццы, порезанной на 444 части? Иными словами, как сложить 15\frac{1}{5}51 пиццы и 14\frac{1}{4}41 пиццы? Какую часть целой пиццы мы в результате получим?
Для того чтобы это сделать, необходимо порезать пиццу на еще меньшие куски. Если мы возьмем пиццу с 5⋅4=205\cdot 4=205⋅4=20 кусками, то ее 444 куска будут равны 15\frac{1}{5}51, а 555 кусков — 14\frac{1}{4}41 целой пиццы. Получается, что 15+14=420+520=920\frac{1}{5}+\frac{1}{4}=\frac{4}{20}+\frac{5}{20}=\frac{9}{20}51+41=204+205=209.
То есть сначала необходимо выбрать общий знаменатель, затем привести дроби к этому знаменателю, а затем сложить числители этих дробей.
Общий знаменатель — это такое число, которое делится на каждый из знаменателей складываемых (или вычитаемых) дробей.
Например, произведение знаменателей всегда делится на каждый из знаменателей.
Найдите произведение знаменателей дробей 27\frac{2}{7}72 и 34\frac{3}{4}43.
Найдите произведение знаменателей дробей 15\frac{1}{5}51 и 43\frac{4}{3}34.
Найдите произведение знаменателей дробей 26\frac{2}{6}62 и 32\frac{3}{2}23.
Как же теперь привести дроби 27\frac{2}{7}72 и 34\frac{3}{4}43 к знаменателю 282828?
Вспоминаем, что если умножить и числитель, и знаменатель дроби на одно и то же число, то значение дроби не изменится. Например, 15\frac{1}{5}51 и 210\frac{2}{10}102 — это одно и тоже число.
То есть нужно домножить числитель и знаменатель дроби на такое число, чтобы в знаменателе получился общий знаменатель дробей (в случае дробей 27\frac{2}{7}72 и 34\frac{3}{4}43 — число 282828).
Числитель и знаменатель дроби 27\frac{2}{7}72 нужно умножить на 444:
27=2⋅47⋅4=828\frac{2}{7}=\frac{2\cdot 4}{7\cdot 4}=\frac{8}{28}72=7⋅42⋅4=288,
— а числитель и знаменатель 34\frac{3}{4}43 — на 777:
34=3⋅74⋅7=2128\frac{3}{4}=\frac{3\cdot 7}{4\cdot 7}=\frac{21}{28}43=4⋅73⋅7=2821.Теперь можно без труда сложить получившиеся дроби: 828+2128=2928=1128\frac{8}{28}+\frac{21}{28}=\frac{29}{28}=1 \frac{1}{28}288+2821=2829=1281.
Общая формула, которой можно пользоваться для сложения дробей: ab+cd=ad+bcbd\frac{a}{b}+\frac{c}{d}=\frac{ad+bc}{bd}ba+dc=bdad+bc
Пользуясь этой формулой, мы получим, что 13+16=1⋅6+3⋅13⋅6=918\frac{1}{3}+\frac{1}{6}=\frac{1\cdot 6+3\cdot 1}{3\cdot 6}=\frac{9}{18}31+61=3⋅61⋅6+3⋅1=189. Как мы видим, эту дробь можно сократить на 999. Получится 12\frac{1}{2}21.
Наименьший общий знаменатель
Можно ли сразу получить дробь, которую не надо было бы сокращать, то есть дробь с наименьшим возможным знаменателем?
Да, можно! Для этого вместо перемножения знаменателей необходимо вычислить их наименьшее общее кратное. То есть наименьшее число, которое делится на оба знаменателя. Наименьшее общее кратное чисел bbb и ddd обозначается НОК(b,d)\text{НОК}(b,d)НОК(b,d).
Например:
НОК(3,6)=6\text{НОК}(3,6)=6НОК(3,6)=6
НОК(10,15)=30\text{НОК}(10,15)=30НОК(10,15)=30.
Для того чтобы вычислить НОК, требуется разложить числа на простые множители, а затем для каждого простого делителя, который входит в разложение хотя бы одного из чисел, выбрать максимальную степень, в которой он входит в разложения.
Например, чтобы вычислить НОК(45,30)\text{НОК}(45,30)НОК(45,30), разложим числа на множители:
45=3⋅3⋅545=3\cdot 3\cdot 545=3⋅3⋅5,
30=2⋅3⋅530=2\cdot 3\cdot 530=2⋅3⋅5.
Число 333 входит в разложения в максимальной степени 222, а числа 222 и 555 — в степени 111. Поэтому НОК равно 2⋅32⋅5=902\cdot 32\cdot 5=902⋅32⋅5=90.
Найдите наименьший общий знаменатель для дробей 38\frac{3}{8}83 и 512\frac{5}{12}125.
Найдите наименьший общий знаменатель для дробей 25\frac{2}{5}52 и 76\frac{7}{6}67.
Найдите наименьший общий знаменатель для дробей 285\frac{2}{85}852 и 1817\frac{18}{17}1718.
После того как общий знаменатель найден, нужно привести дроби к этому знаменателю. То есть домножить числитель и знаменатель каждой дроби на такое число, что в знаменателе получится общий знаменатель.Например, для дробей 845\frac{8}{45}458 и 730\frac{7}{30}307 общий знаменатель равен 909090. Чтобы получить в знаменателе 909090, число 454545 нужно умножить на 222, а число 303030 — на 333. Получим:
845+730=8⋅290+7⋅390=16+2190=3790\frac{8}{45}+\frac{7}{30}=\frac{8\cdot 2}{90}+\frac{7\cdot 3}{90}=\frac{16+21}{90}=\frac{37}{90}458+307=908⋅2+907⋅3=9016+21=9037.
В общем виде этот подход можно описать так.
Чтобы сложить дроби ab\frac{a}{b}ba и cd\frac{c}{d}dc, вычислите НОК(b,d)\text{НОК}(b,d)НОК(b,d) и числа b1=НОК(b,d)bb_1=\frac{\text{НОК}(b,d)}{b}b1=bНОК(b,d) и d1=НОК(b,d)dd_1=\frac{\text{НОК}(b,d)}{d}d1=dНОК(b,d).
Тогда ab+cd=a⋅b1b⋅b1+c⋅d1d⋅d1=\frac{a}{b}+\frac{c}{d}=\frac{a\cdot b_1}{b\cdot b_1}+\frac{c\cdot d_1}{d\cdot d_1}=ba+dc=b⋅b1a⋅b1+d⋅d1c⋅d1==ab1НОК(b,d)+cd1НОК(b,d)=ab1+cd1НОК(b,d)=\frac{ab_1}{\text{НОК}(b,d)}+\frac{cd_1}{\text{НОК}(b,d)}=\frac{ab_1+cd_1}{\text{НОК}(b,d)}=НОК(b,d)ab1+НОК(b,d)cd1=НОК(b,d)ab1+cd1
То, что написано выше, выглядит сложно, однако при достаточной тренировке этот метод сложения является самым эффективным.
Найдите сумму дробей 718\frac{7}{18}187 и 724\frac{7}{24}247. В ответе запишите обыкновенную дробь (через / ).
Найдите сумму дробей 913\frac{9}{13}139 и 139\frac{1}{39}391. В ответе запишите обыкновенную дробь (через / ).
Найдите сумму дробей 334\frac{3}{34}343 и 910\frac{9}{10}109. В ответе запишите обыкновенную дробь (после сокращения, через / ).
Умножать и делить дроби проще, чем складывать и вычитать.
Чтобы умножить две обыкновенные дроби, нужно перемножить их числители, перемножить их знаменатели, а затем поделить первое произведение на второе:ab⋅cd=a⋅cb⋅d\frac{a}{b}\cdot\frac{c}{d}=\frac{a\cdot c}{b\cdot d}ba⋅dc=b⋅da⋅cЧтобы разделить одну дробь на другую, нужно вторую дробь сначала “перевернуть”, а затем перемножить первую дробь и перевернутую вторую дробь:ab÷cd=ab⋅dc=a⋅db⋅c\frac{a}{b}\div\frac{c}{d}=\frac{a}{b}\cdot\frac{d}{c}=\frac{a\cdot d}{b\cdot c}ba÷dc=ba⋅cd=b⋅ca⋅d
Найдите произведение 611\frac{6}{11}116 и 23\frac{2}{3}32. В ответе запишите обыкновенную дробь (после сокращения, через / ).
Перед умножением и делением дроби лучше сокращать, чтобы работать с меньшими числами. При этом сокращать дроби можно и “по диагонали” (перед умножением): сокращать числитель одной дроби со знаменателем другой дроби.
Рассмотрим произведение 611⋅23\frac{6}{11}\cdot\frac{2}{3}116⋅32. Числитель первой дроби и знаменатель второй дроби делятся на 333. Отсюда:
611⋅23=3⋅211⋅23⋅1=211⋅21=2⋅211⋅1=411\frac{6}{11}\cdot\frac{2}{3}=\frac{3\cdot 2}{11}\cdot\frac{2}{3\cdot 1}=\frac{2}{11}\cdot\frac{2}{1}=\frac{2\cdot 2}{11\cdot 1}=\frac{4}{11}116⋅32=113⋅2⋅3⋅12=112⋅12=11⋅12⋅2=114.
Приведем еще один пример. Пусть нам надо умножить 3539\frac{35}{39}3935 на 2625\frac{26}{25}2526.
Если решать этот пример “в лоб”, придется найти произведения 35⋅2635\cdot 2635⋅26 и 39⋅2539\cdot 2539⋅25, а делать это очень не хочется.
Зато можно заметить, что числитель первой дроби и знаменатель второй дроби делятся на 555, а числитель второй дроби и знаменатель первой дроби делятся на 131313. Сократим дроби перед умножением:3539⋅2625=5⋅73⋅13⋅2⋅135⋅5=73⋅25=7⋅23⋅5=1415\frac{35}{39}\cdot \frac{26}{25}=\frac{5\cdot 7}{3\cdot 13}\cdot\frac{2\cdot 13}{5\cdot 5}=\frac{7}{3}\cdot\frac{2}{5}=\frac{7\cdot 2}{3\cdot 5}=\frac{14}{15}3935⋅2526=3⋅135⋅7⋅5⋅52⋅13=37⋅52=3⋅57⋅2=1514
Вычислите 13÷16\frac{1}{3}\div \frac{1}{6}31÷61.
Вычислите 2324÷4636\frac{23}{24}\div\frac{46}{36}2423÷3646.
А как умножить, например, 3233 \frac{2}{3}332 на 1271 \frac{2}{7}172?
Если вам даны смешанные дроби, всегда преобразовывайте их в неправильные простые дроби, прежде чем умножать, делить, возводить в степень или извлекать корень.
323⋅127=113⋅97=9921=337=4573 \frac{2}{3} \cdot 1 \frac{2}{7}= \frac{11}{3} \cdot \frac{9}{7}=\frac{99}{21}=\frac{33}{7}=4 \frac{5}{7}332⋅172=311⋅79=2199=733=475.
Перемножьте 1121 \frac{1}{2}121 и 1131 \frac{1}{3}131.
Многие школьники, пренебрегая этим простым правилом, совершают ошибки в примерах, подобных этому: 449÷494 \frac{4}{9}\div \frac{4}{9}494÷94.
В таком примере возникает желание срезать углы, сократить что-нибудь раньше времени.
А какой ответ в примере 449÷494 \frac{4}{9}\div \frac{4}{9}494÷94 на самом деле правильный?
Источник: https://lampa.io/p/%D0%B4%D0%B5%D0%B9%D1%81%D1%82%D0%B2%D0%B8%D1%8F-%D1%81-%D0%B4%D1%80%D0%BE%D0%B1%D1%8F%D0%BC%D0%B8-000000000244b193351cbbe5556c10c8
Конспект по математике
Ключевые слова конспекта: дроби, обыкновенная дробь, правильные и неправильные дроби, основное свойство дроби, сравнение дробей, арифметические действия с дробями, нахождение части от целого и целого по его части.
Одна или несколько равных частей единицы называются обыкновенной дробью. Дробь 3/4 означает, что единицу разделили на 4 части и взяли 3 таких части.
Дробь можно рассматривать и как результат деления натуральных чисел. Частное от деления натуральных чисел а и b можно записать в виде дроби a/b — где делимое а — числитель, а делитель b — знаменатель.
Правильная и неправильная дробь
Дробь, в которой числитель меньше знаменателя, называется правильной, а дробь, где числитель больше или равен знаменателю, — неправильной.
Число, состоящее из целой и дробной частей, можно обратить в неправильную дробь. Для этого нужно умножить целую часть на знаменатель и к произведению прибавить числитель данной дроби. Полученная сумма будет числителем дроби, а знаменателем остается знаменатель дробной части.
Из любой неправильной дроби можно выделить целую часть. Для этого нужно разделить с остатком числитель на знаменатель. Частное от деления — это целая часть, остаток — это числитель, делитель — это знаменатель.
Определение. Основное свойство дроби: если числитель и знаменатель дроби умножить или разделить на одно и то же отличное от нуля число, то получится дробь, равная данной
Основное свойство дроби используют при сокращении дробей. Деление числителя и знаменателя на их общий делитель, отличный от единицы, называют сокращением дробей.
Сравнение дробей
- Из двух дробей с одинаковыми знаменателями больше та, у которой числитель больше.
- Из двух дробей с одинаковыми числителями больше та, у которой знаменатель меньше.
Чтобы сравнить дроби с разными числителями и знаменателями, нужно:
- привести дроби к наименьшему общему знаменателю;
- сравнить полученные дроби.
Чтобы привести дроби к наименьшему общему знаменателю, нужно:
- найти наименьшее общее кратное (НОК) знаменателей дробей (оно и будет их общим знаменателем);
- разделить общий знаменатель на знаменатель данных дробей, т. е. найти для каждой дроби дополнительный множитель;
- умножить числитель и знаменатель каждой дроби на ее дополнительный множитель.
Сложение и вычитание дробей
При сложении (вычитании) дробей с одинаковыми знаменателями к числителю первой дроби прибавляют числитель второй дроби (из числителя первой вычитают числитель второй) и оставляют тот же знаменатель. Полученную дробь, если возможно, сокращают и выделяют целую часть.
При сложении (вычитании) дробей с разными знаменателями нужно предварительно привести эти дроби к наименьшему общему знаменателю, затем сложить (вычесть) полученные дроби, используя правило сложения (вычитания) дробей с одинаковыми знаменателями.
Особенно надо быть внимательным при сложении (вычитании) с участием смешанных чисел!
Общий случай сложения (вычитания) дробей.
Умножение дробей
- Произведение двух дробей a/b и c/d равно дроби, числитель которой равен произведению числителей, а знаменатель — произведению знаменателей:
- При умножении чисел, состоящих из целой и дробной частей, их предварительно представляют в виде неправильных дробей, а затем умножают согласно п. 1.
Деление дробей
Два числа называются взаимно обратными, если их произведение равно 1, то есть дроби вида a/b и b/a являются взаимно обратными. Например 1/3 и 3. Чтобы разделить одну дробь на другую, нужно делимое умножить на число, обратное к делителю.
При делении чисел, состоящих из целой и дробной части, нужно предварительно представить их в виде неправильной дроби.
Нахождение части от целого (дроби от числа)
Чтобы найти часть от целого, нужно число, соответствующее целому, разделить на знаменатель дроби, выражающей эту часть, и результат умножить на числитель той же дроби.
Задача нахождения части от целого по существу является задачей нахождения дроби от числа. Чтобы найти дробь (часть) от числа, необходимо число умножить на эту дробь.
Нахождение целого по его части (числа по его дроби)
Чтобы найти целое по его части, нужно число, соответствующее этой части, разделить на числитель дроби, выражающей эту часть, и результат умножить на знаменатель той же дроби.
Задача нахождения целого по его части по существу является задачей нахождения числа по его дроби. Чтобы найти число по его дроби, необходимо данное значение разделить на эту дробь.
Это конспект по теме «Обыкновенная дробь». Выберите дальнейшие действия:
Источник: https://uchitel.pro/%D0%BE%D0%B1%D1%8B%D0%BA%D0%BD%D0%BE%D0%B2%D0%B5%D0%BD%D0%BD%D0%B0%D1%8F-%D0%B4%D1%80%D0%BE%D0%B1%D1%8C/
Действия с дробями: правила, примеры, решения
Данная статья рассматривает действия над дробями. Будут сформированы и обоснованы правила сложения, вычитания, умножения, деления или возведения в степень дробей вида AB, где A и B могут быть числами, числовыми выражениями или выражениями с переменными. В заключении будут рассмотрены примеры решения с подробным описанием.
Правила выполнения действий с числовыми дробями общего вида
Числовые дроби общего вида имеют числитель и знаменатель, в которых имеются натуральные числа или числовые выражения. Если рассмотреть такие дроби, как 35, 2,84, 1+2·34·(5-2), 34+782,3-0,8, 12·2, π1-23+π, 20,5ln 3, то видно, что числитель и знаменатель может иметь не только числа, но и выражения различного плана.
Определение 1
Существуют правила, по которым идет выполнение действий с обыкновенными дробями. Оно подходит и для дробей общего вида:
- При вычитании дробей с одинаковыми знаменателями складываются только числители, а знаменатель остается прежним, а именно: ad±cd=a±cd, значения a, c и d≠0 являются некоторыми числами или числовыми выражениями.
- При сложении или вычитании дроби при разных знаменателях, необходимо произвести приведение к общему, после чего произвести сложение или вычитание полученных дробей с одинаковыми показателями. Буквенно это выглядит таком образом ab±cd=a·p±c·rs, где значения a, b≠0, c, d≠0, p≠0, r≠0, s≠0 являются действительными числами, а b·p=d·r=s. Когда p=d и r=b, тогда ab±cd=a·d±c·db·d.
- При умножении дробей выполняется действие с числителями, после чего со знаменателями, тогда получим ab·cd=a·cb·d, где a, b≠0, c, d≠0 выступают в роли действительных чисел.
- При делении дроби на дробь первую умножаем на вторую обратную, то есть производим замену местами числителя и знаменателя: ab:cd=ab·dc.
Обоснование правил
Определение 2
Существуют следующие математические моменты, на которые следует опираться при вычислении:
- дробная черта означает знак деления;
- деление на число рассматривается как умножение на его обратное значение;
- применение свойства действий с действительными числами;
- применение основного свойства дроби и числовых неравенств.
С их помощью можно производить преобразования вида:
ad±cd=a·d-1±c·d-1=a±c·d-1=a±cd;ab±cd=a·pb·p±c·rd·r=a·ps±c·es=a·p±c·rs;ab·cd=a·db·d·b·cb·d=a·d·a·d-1·b·c·b·d-1==a·d·b·c·b·d-1·b·d-1=a·d·b·cb·d·b·d-1==(a·c)·(b·d)-1=a·cb·d
Примеры
В предыдущем пункте было сказано про действия с дробями. Именно после этого дробь нуждается в упрощении. Подробно эта тема была рассмотрена в пункте о преобразовании дробей.
Для начала рассмотрим пример сложения и вычитания дробей с одинаковым знаменателем.
Пример 1
Даны дроби 82,7 и 12,7, то по правилу необходимо числитель сложить, а знаменатель переписать.
Решение
Тогда получаем дробь вида 8+12,7. После выполнения сложения получаем дробь вида 8+12,7=92,7=9027=313. Значит, 82,7+12,7=8+12,7=92,7=9027=313.
Ответ: 82,7+12,7=313
Имеется другой способ решения. Для начала производится переход к виду обыкновенной дроби, после чего выполняем упрощение. Это выглядит таким образом:82,7+12,7=8027+1027=9027=313
Пример 2
Произведем вычитание из 1-23·log23·log25+1 дроби вида 233·log23·log25+1.
Так как даны равные знаменатели, значит, что мы выполняем вычисление дроби при одинаковом знаменателе. Получим, что
1-23·log23·log25+1-233·log23·log25+1=1-2-233·log23·log25+1
Имеются примеры вычисления дробей с разными знаменателями. Важный пункт – это приведение к общему знаменателю. Без этого мы не сможем выполнять дальнейшие действия с дробями.
Процесс отдаленно напоминает приведение к общему знаменателю. То есть производится поиск наименьшего общего делителя в знаменателе, после чего добавляются недостающие множители к дробям.
Если складываемые дроби не имеют общих множителей, тогда им может стать их произведение.
Пример 3
Рассмотрим на примере сложения дробей 235+1 и 12.
Решение
В данном случае общим знаменателем выступает произведение знаменателей. Тогда получаем, что 2·35+1. Тогда при выставлении дополнительных множителей имеем, что к первой дроби он равен 2, а ко второй 35+1. После перемножения дроби приводятся к виду 42·35+1. Общее приведение 12 будет иметь вид 35+12·35+1. Полученные дробные выражения складываем и получаем, что
235+1+12=2·22·35+1+1·35+12·35+1==42·35+1+35+12·35+1=4+35+12·35+1=5+352·35+1
Ответ: 235+1+12=5+352·35+1
Когда имеем дело с дробями общего вида, тогда о наименьшем общем знаменателе обычно дело не идет. В качестве знаменателя нерентабельно принимать произведение числителей. Для начала необходимо проверить, имеется ли число, которое меньше по значению, чем их произведение.
Пример 4
Рассмотрим на примере 16·215 и 14·235, когда их произведение будет равно 6·215·4·235=24·245. Тогда в качестве общего знаменателя берем 12·235.
Рассмотрим примеры умножений дробей общего вида.
Пример 5
Для этого необходимо произвести умножение 2+16 и 2·53·2+1.
Решение
Следую правилу, необходимо переписать и в виде знаменателя написать произведение числителей. Получаем, что 2+16·2·53·2+12+1·2·56·3·2+1. Когда дробь будет умножена, можно производить сокращения для ее упрощения. Тогда 5·332+1:1093=5·332+1·9310.
Используя правило перехода от деления к умножению на обратную дробь, получим дробь, обратную данной. Для этого числитель и знаменатель меняются местами. Рассмотрим на примере:
5·332+1:1093=5·332+1·9310
После чего должны выполнить умножение и упростить полученную дробь. Если необходимо, то избавиться от иррациональности в знаменателе. Получаем, что
5·332+1:1093=5·33·9310·2+1=5·210·2+1=32·2+1==3·2-12·2+1·2-1=3·2-12·22-12=3·2-12
Ответ: 5·332+1:1093=3·2-12Данный пункт применим, когда число или числовое выражение может быть представлено в виде дроби, имеющую знаменатель, равный 1, тогда и действие с такой дробью рассматривается отдельным пунктом. Например, выражение 16·74-1·3 видно, что корень из 3 может быть заменен другим 31 выражением. Тогда эта запись будет выглядеть как умножение двух дробей вида 16·74-1·3=16·74-1·31.
Выполнение действие с дробями, содержащими переменные
Правила, рассмотренные в первой статье , применимы для действий с дробями, содержащими переменные. Рассмотрим правило вычитания, когда знаменатели одинаковые.
Необходимо доказать, что A, C и D (D не равное нулю) могут быть любыми выражениями, причем равенство AD±CD=A±CD равноценно с его областью допустимых значений.
Необходимо взять набор переменных ОДЗ. Тогда А, С, D должны принимать соответственные значения a0, c0 и d0.
Подстановка вида AD±CD приводит разность вида a0d0±c0d0, где по правилу сложения получаем формулу вида a0±c0d0. Если подставить выражение A±CD, тогда получаем ту же дробь вида a0±c0d0.
Отсюда делаем вывод, что выбранное значение, удовлетворяющее ОДЗ, A±CD и AD±CD считаются равными.
При любом значении переменных данные выражения будут равны, то есть их называют тождественно равными. Значит это выражение считается доказываемым равенством вида AD±CD=A±CD.
Примеры сложения и вычитания дробей с переменными
Когда имеются одинаковые знаменатели, необходимо только складывать или вычитать числители. Такая дробь может быть упрощена.
Иногда приходится работать с дробями, которые являются тождественно равными, но при первом взгляде это незаметно, так как необходимо выполнять некоторые преобразования. Например, x23·x13+1 и x13+12 или 12·sin 2α и sin a·cos a.
Чаще всего требуется упрощение исходного выражения для того, чтобы увидеть одинаковые знаменатели.
Пример 6
Вычислить:1) x2+1x+x-2-5-xx+x-2, 2)lg2x+4x·(lg x+2)+4·lg xx·(lg x+2), x-1x-1+xx+1.
Решение
- Чтобы произвести вычисление, необходимо вычесть дроби, которым имеют одинаковые знаменатели. Тогда получаем, что x2+1x+x-2-5-xx+x-2=x2+1-5-xx+x-2. После чего можно выполнять раскрытие скобок с приведением подобных слагаемых. Получаем, чтоx2+1-5-xx+x-2=x2+1-5+xx+x-2=x2+x-4x+x-2
- Так как знаменатели одинаковые, то остается только сложить числители, оставив знаменатель:lg2x+4x·(lg x+2)+4·lg xx·(lg x+2)=lg2x+4+4x·(lg x+2)
Сложение было выполнено. Видно, что можно произвести сокращение дроби. Ее числитель может быть свернут по формуле квадрата суммы, тогда получим (lg x+2)2из формул сокращенного умножения. Тогда получаем, что
lg2x+4+2·lg xx·(lg x+2)=(lg x+2)2x·(lg x+2)=lg x+2x - Заданные дроби вида x-1x-1+xx+1 с разными знаменателями. После преобразования можно перейти к сложению.
Рассмотрим двоякий способ решения.
Первый способ заключается в том, что знаменатель первой дроби подвергается разложению на множители при помощи квадратов, причем с ее последующим сокращением. Получим дробь вида
x-1x-1=x-1(x-1)·x+1=1x+1
Значит, x-1x-1+xx+1=1x+1+xx+1=1+xx+1.
В таком случае необходимо избавляться от иррациональности в знаменателе.
Получим:
1+xx+1=1+x·x-1x+1·x-1=x-1+x·x-xx-1
Второй способ заключается в умножении числителя и знаменателя второй дроби на выражение x-1. Таким образом, мы избавляемся от иррациональности и переходим к сложению дроби при наличии одинакового знаменателя. Тогда
x-1x-1+xx+1=x-1x-1+x·x-1x+1·x-1==x-1x-1+x·x-xx-1=x-1+x·x-xx-1
Ответ: 1) x2+1x+x-2-5-xx+x-2=x2+x-4x+x-2, 2)lg2x+4x·(lg x+2)+4·lg xx·(lg x+2)=lg x+2x, 3)x-1x-1+xx+1=x-1+x·x-xx-1.
В последнем примере получили, что приведение к общему знаменателю неизбежно. Для этого необходимо упрощать дроби. Для сложения или вычитая всегда необходимо искать общий знаменатель, который выглядит как произведение знаменателей с добавлением дополниетльных множителей к числителям.
Пример 7
Вычислить значения дробей: 1) x3+1×7+2·2, 2) x+1x·ln2(x+1)·(2x-4)-sin xx5·ln(x+1)·(2x-4), 3) 1cos2x-x+1cos2x+2·cos x·x+x
Решение
- Никаких сложных вычислений знаменатель не требует, поэтому нужно выбрать их произведение вида 3·x7+2·2, тогда к первой дроби x7+2·2 выбирают как дополнительный множитель, а 3 ко второй. При перемножении получаем дробь вида x3+1×7+2·2=x·x7+2·23·x7+2·2+3·13·x7+2·2==x·x7+2·2+33·x7+2·2=x·x7+2·2·x+33·x7+2·2
- Видно, что знаменатели представлены в виде произведения, что означает ненужность дополнительных преобразований. Общим знаменателем будет считаться произведение вида x5·ln2x+1·2x-4. Отсюда x4является дополнительным множителем к первой дроби, а ln(x+1)ко второй. После чего производим вычитание и получаем, что:
x+1x·ln2(x+1)·2x-4-sin xx5·ln(x+1)·2x-4==x+1·x4x5·ln2(x+1)·2x-4-sin x·lnx+1×5·ln2(x+1)·(2x-4)==x+1·x4-sin x·ln(x+1)x5·ln2(x+1)·(2x-4)=x·x4+x4-sin x·ln(x+1)x5·ln2(x+1)·(2x-4) - Данный пример имеет смысл при работе со знаменателями дробями. Необходимо применить формулы разности квадратов и квадрат суммы, так как именно они дадут возможность перейти к выражению вида 1cos x-x·cos x+x+1(cos x+x)2. Видно, что дроби приводятся к общему знаменателю. Получаем, что cos x-x·cos x+x2.
После чего получаем, что
1cos2x-x+1cos2x+2·cos x·x+x==1cos x-x·cos x+x+1cos x+x2==cos x+xcos x-x·cos x+x2+cos x-xcos x-x·cos x+x2==cos x+x+cos x-xcos x-x·cos x+x2=2·cos xcos x-x·cos x+x2
Ответ:
1) x3+1×7+2·2=x·x7+2·2·x+33·x7+2·2, 2) x+1x·ln2(x+1)·2x-4-sin xx5·ln(x+1)·2x-4==x·x4+x4-sin x·ln(x+1)x5·ln2(x+1)·(2x-4), 3) 1cos2x-x+1cos2x+2·cos x·x+x=2·cos xcos x-x·cos x+x2.
Примеры умножения дробей с переменными
При умножении дробей числитель умножается на числитель, а знаменатель на знаменатель. Тогда можно применять свойство сокращения.
Пример 8
Произвести умножение дробей x+2·xx2·ln x2·ln x+1 и 3·x213·x+1-2sin2·x-x.
Решение
Необходимо выполнить умножение. Получаем, что
x+2·xx2·ln x2·ln x+1·3·x213·x+1-2sin(2·x-x)==x-2·x·3·x213·x+1-2×2·ln x2·ln x+1·sin (2·x-x)
Число 3 переносится на первое место для удобства подсчетов, причем можно произвести сокращение дроби на x2, тогда получим выражение вида
3·x-2·x·x13·x+1-2ln x2·ln x+1·sin (2·x-x)
Ответ: x+2·xx2·ln x2·ln x+1·3·x213·x+1-2sin(2·x-x)=3·x-2·x·x13·x+1-2ln x2·ln x+1·sin (2·x-x).
Деление
Деление у дробей аналогично умножению, так как первую дробь умножают на вторую обратную. Если взять к примеру дробь x+2·xx2·ln x2·ln x+1 и разделить на 3·x213·x+1-2sin2·x-x, тогда это можно записать таким образом, как
x+2·xx2·ln x2·ln x+1:3·x213·x+1-2sin(2·x-x), после чего заменить произведением вида x+2·xx2·ln x2·ln x+1·3·x213·x+1-2sin(2·x-x)
Возведение в степень
Перейдем к рассмотрению действия с дробями общего вида с возведением в степень. Если имеется степень с натуральным показателем, тогда действие рассматривают как умножение одинаковых дробей.
Но рекомендовано использовать общий подход, базирующийся на свойствах степеней. Любые выражения А и С, где С тождественно не равняется нулю, а любое действительное r на ОДЗ для выражения вида ACr справедливо равенство ACr=ArCr.
Результат – дробь, возведенная в степень. Для примера рассмотрим:
x0,7-π·ln3x-2-5x+12,5==x0,7-π·ln3x-2-52,5x+12,5
Порядок выполнения действий с дробями
Действия над дробями выполняются по определенным правилам. На практике замечаем, что выражение может содержать несколько дробей или дробных выражений. Тогда необходимо все действия выполнять в строгом порядке: возводить в степень, умножать, делить, после чего складывать и вычитать. При наличии скобок первое действие выполняется именно в них.
Пример 9
Вычислить 1-xcos x-1cos x·1+1x.
Решение
Так как имеем одинаковый знаменатель, то 1-xcos x и 1cos x, но производить вычитания по правилу нельзя, сначала выполняются действия в скобках, после чего умножение, а потом сложение. Тогда при вычислении получаем, что
1+1x=11+1x=xx+1x=x+1x
При подстановке выражения в исходное получаем, что 1-xcos x-1cos x·x+1x. При умножении дробей имеем: 1cos x·x+1x=x+1cos x·x. Произведя все подстановки, получим 1-xcos x-x+1cos x·x. Теперь необходимо работать с дробями, которые имеют разные знаменатели. Получим:
x·1-xcos x·x-x+1cos x·x=x·1-x-1+xcos x·x==x-x-x-1cos x·x=-x+1cos x·x
Ответ: 1-xcos x-1cos x·1+1x=-x+1cos x·x.
Источник: https://Zaochnik.com/spravochnik/matematika/vyrazhenija/dejstvija-s-drobjami/
Тема дроби 5 класс, суть дроби, сложение, вычитание, деление, умножение, примеры с объяснениями. Как понять дроби
Практически каждый пятиклассник после первого знакомства с обыкновенными дробями находится в небольшом шоке. Мало того, что нужно еще понять суть дроби, так с ними еще придется выполнять арифметические действия. После этого маленькие ученики будут систематически допрашивать своего учителя, разузнавать когда же эти дроби кончатся.
Чтобы избежать подобных ситуаций, достаточно всего лишь как можно проще объяснить детям эту нелегкую тему, а лучше в игровой форме.
Суть дроби
Перед тем, как узнать что такое дробь, ребенок должен познакомиться с понятием доля. Здесь лучше всего подойдет ассоциативный метод.
Представьте целый торт, который поделили на несколько равных частей, допустим на четыре. Тогда каждый кусочек торта, можно назвать долей. Если взять один из четырех кусков торта, то он будет одной четвертой долей.
Доли бывают разные, потому что, целое можно поделить на совершенно разное количество частей. Чем больше долей в целом, тем они меньше, и наоборот.
Чтобы доли можно было обозначить, придумали такое математическое понятие, как обыкновенная дробь. Дробь позволит нам записать столько долей, сколько потребуется.Составными частями дроби являются числитель и знаменатель, которые разделены дробной чертой либо наклонной чертой. Многие дети не понимают их смысла, поэтому и суть дроби им не понятна. Дробная черта обозначает деление, здесь нет ничего сложного.
Знаменатель принято записывать снизу, под дробной чертой или справа от накл.черты. Он показывает количество долей целого. Числитель, он записывается сверху над дробной чертой или слева от накл.черты, определяет сколько долей взяли.К примеру дробь 4/7. В данном случае 7-это знаменатель, показывает, что есть всего 7 долей, а числитель 4 указывает на то, что из семи долей взяли четыре.
Основные доли и их запись в дробях:
Помимо обыкновеной, существует еще и десятичная дробь.
Действия с дробями 5 класс
В пятом классе учатся выполнять все арифметические действия с дробями.
Все действия с дробями выполняются по правилам, и надеяться на то, что не выучив правило все получится само сабой не стоит. Поэтому не стоит пренебрегать устной частью домашнего задания по математике.
Мы уже поняли, что запись десятичной и обыкновенной дроби различны, следовательно и арифметические действия будут выполняться по-разному. Действия с обыкновенными дробями зависят от тех чисел, которые стоят в знаменателе, а в десятичной-после запятой справа.
Для дробей, у которых знаменатели одинаковые, алгоритм сложения и вычитания очень прост. Действия выполняем только с числителями.
Пример:
Для дробей с разными знаменателями нужно найти Наименьший Общий Знаменатель ( НОЗ). Это то число, которое будет делиться без остатка на все знаменатели, и будет наименьшим из таких чисел, если их несколько.
Пример:
Для сложения либо вычитания десятичных дробей, нужно записать их в столбик, запятая под запятой, и уравнить количество десятичных знаков если это требуется.
Пример:
Чтобы перемножить обыкновенные дроби просто найди произведение числителей и знаменателей. Очень простое правило.
Пример:
Деление выполняется по следующему алгоритму:
- Делимое записать без изменения
- Деление превратить в умножение
- Делитель перевернуть (записать обратную дробь делителю)
- Выполнить умножение
Пример:
Сложение дробей, объяснение
Давайте более подробно разберем, как складывать обыкновенные и десятичные дроби.
Как видно на изображении выше, у дроби одна третья и две третьих общий знаменатель три. Значит требуется сложить только числители единицу и два, а знаменатель оставить без изменения. В итоге получается сумма три третьих. Такой ответ, когда числитель и знаменатель дроби равны, можно записать как 1, так как 3:3 = 1.
Требуется найти сумму дробей две третьих и две девятых. В этом случае знаменатели различны, 3 и 9. Чтобы выполнить сложение, нужно подобрать общий. Есть очень простой способ. Выбираем наибольший знаменатель, это 9. Проверяем делится ли он на 3. Так как 9:3 = 3 без остатка, следовательно 9 подходит как общий знаменатель.
Следующим шагом находим дополнительные множители для каждого числителя. Для этого общий знаменатель 9 делим поочередно на знаменатель каждой дроби, полученные числа и будут допол. множ. Для первой дроби: 9:3 = 3, дописываем к числителю первой дроби 3. Для второй дроби: 9:9 = 1, единицу можно не дописывать, так как при умножении на нее получится то же самое число.
Теперь умножаем числители на их дополнительные множители и складываем результаты. Полученная сумма дробь восемь девятых.Сложение десятичных дробей выполняется по тому же правилу, что и сложение натуральных чисел. В столбик, разряд записывается под разрядом. Единственное отличие в том, что в десятичных дробях нужно правильно поставить запятую в результате. Для этого дроби записываются запятая под запятой, и в сумме требуется лишь снести запятую вниз.
Найдем сумму дробей 38, 251 и 1, 56. Чтобы было удобнее выполнять действия, мы уровняли количество десятичных знаков справа, добавив 0.
Складываем дроби не обращая внимания на запятую. А в полученной сумме просто опускаем запятую вниз. Ответ: 39, 811.
Вычитание дробей, объяснение
Чтобы найти разность дробей две третьих и одна третья, нужно вычислить разность числителей 2-1 = 1, а знаменатель оставить без изменения. В ответе получаем разность одну третью.
Найдем разность дробей пять шестых и семь десятых. Находим общий знаменатель. Используем способ подбора, из 6 и 10 наибольший 10. Проверяем: 10 : 6 без остатка не делится. Добавляем еще 10, получается 20:6, тоже без остатка не делится. Снова увеличиваем на 10, получили 30:6 = 5. Общий знаменатель 30. Так же НОЗ можно найти по таблице умножения.
Находим дополнительные множители. 30:6 = 5 — для первой дроби. 30:10 = 3 — для второй. Перемножаем числители и их доп.множ. Получаем уменьшаемое 25/30 и вычитаемое 21/30. Далее выполняем вычитание числителей, а знаменатель оставляем без изменения.
В результате получилась разность 4/30. Дробь сократимая. Разделим ее на 2. В ответе 2/15.
Деление десятичных дробей 5 класс
В этой теме рассматривается два варианта действий:
Умножение десятичных дробей 5 класс
Вспомните, как вы умножаете натуральные числа, точно таким же способом и находят произведение десятичных дробей. Сначала разберемся, как умножить десятичную дробь на натуральное число. Для этого:
При умножении десятичной дроби на десятичную, действуем точно также.
Смешанные дроби 5 класс
Пятиклашки любят называть такие дроби не смешанные, а , наверное так легче запомнить. Смешанные дроби называются так от того, что они получились путем соединения целого натурального числа и обыкновенной дроби.
Смешанная дробь состоит из целой и дробной части.
При чтении таких дробей сначала называют целую часть, затем дробную: одна целая две третьих, две целых одна пятая, три целых две пятых, четыре целых три четвертых.
Как же они получаются, эти смешанные дроби? Все довольно просто. Когда мы получаем в ответе неправильную дробь ( дробь у которой числитель больше знаменателя), мы ее должны всегда переводить в смешанную. Достаточно разделить числитель на знаменатель. Это действие называется выделением целой части:
Перевести смешанную дробь обратно в неправильную тоже несложно:
Примеры с десятичными дробями 5 класс с объяснением
Много вопросов у детей вызывают примеры на несколько действий. Разберем пару таких примеров.
Пример 1.
( 0,4 · 8,25 — 2,025 ) : 0,5 =
Первым действием находим произведение чисел 8,25 и 0,4. Выполняем умножение по правилу. В ответе отсчитываем справа налево три знака и ставим запятую.
Второе действие находится там же в скобках, это разность. От 3,300 вычитаем 2,025. Записываем действие в столбик, запятая под запятой.
Третье действие-деление. Полученную разность во втором действии делим на 0,5. Запятая переносится на один знак. Результат 2,55.
Ответ: 2,55.
Пример 2.
( 0, 93 + 0, 07 ) : ( 0, 93 — 0, 805 ) =
Первое действие сумма в скобках.Складываем в столбик, помним, что запятая под запятой. Получаем ответ 1,00.Второе действие разность из второй скобки. Так как у уменьшаемого меньше знаков после запятой, чем у вычитаемого, добавляем недостающий. Результат вычитания 0 ,125.
Третьим действие делим сумму на разность. Запятая переносится на три знака. Получилось деление 1000 на 125.
Ответ: 8.
Примеры с обыкновенными дробями с разными знаменателями 5 класс с объяснением
В первом примере находим сумму дробей 5/8 и 3/7. Общим знаменателем будет число 56. Находим дополнительные множ., разделим 56:8 = 7 и 56:7 = 8.
Дописываем их к первой и второй дроби соответственно. Перемножаем числители и их множители, получаем сумму дробей 35/56 и 24/56. Получили сумму 59/56. Дробь неправильная, переводим ее в смешанное число.
Остальные примеры решаются аналогично.
Примеры с дробями 5 класс для тренировки
Для удобства переведите смешанные дроби в неправильные и выполняйте действия.
Как научить ребенка легко решать дроби с помощью лего
С помощью такого конструктора можно не только хорошо развивать воображение ребенка, но и объяснить наглядно в игровой форме, что такое доля и дробь.
На картинке ниже показано, что одна часть с восемью кружками это целое. Значит, взяв пазл с четырьмя кружками, получается половина, или 1/2. На картинке наглядно показано, как решать примеры с лего, если считать кружки на деталях.
Вы можете построить башенки из определенного количества частей и подписать каждую из них, как на картинке ниже. Например возьмем башенку из семи частей. Каждая часть зеленого конструктора будет 1/7. Если вы к одной такой части добавите еще две, то получится 3/7. Наглядное объяснение примера 1/7+2/7 = 3/7.
Чтобы получать пятерки по математике не забывайте учить правила и отрабатывать их на практике.
Источник: https://luckclub.ru/kak-reshit-drobi-5-klass-sut-drobi-slozhenie-vychitanie-delenie-umnozhenie-primery-s-obyasneniyami-uchim-rebenka-ponimat-drobi
Сложные выражения с дробями. Порядок действий
8 августа 2011
Теперь, когда мы научились складывать и умножать отдельные дроби, можно рассматривать более сложные конструкции. Например, что, если в одной задаче встречается и сложение, и вычитание, и умножение дробей?
В первую очередь, надо перевести все дроби в неправильные. Затем последовательно выполняем требуемые действия — в том же порядке, как и для обычных чисел. А именно:
- Сначала выполняется возведение в степень — избавьтесь от всех выражений, содержащих показатели;
- Затем — деление и умножение;
- Последним шагом выполняется сложение и вычитание.
Разумеется, если в выражении присутствуют скобки, порядок действий изменяется — все, что стоит внутри скобок, надо считать в первую очередь. И помните о неправильных дробях: выделять целую часть надо лишь тогда, когда все остальные действия уже выполнены.
Задача. Найдите значения выражений:
Переведем все дроби из первого выражения в неправильные, а затем выполним действия:
Теперь найдем значение второго выражения. Тут дробей с целой частью нет, но есть скобки, поэтому сначала выполняем сложение, и лишь затем — деление. Заметим, что 14 = 7 · 2. Тогда:
Наконец, считаем третий пример. Здесь есть скобки и степень — их лучше считать отдельно. Учитывая, что 9 = 3 · 3, имеем:Обратите внимание на последний пример. Чтобы возвести дробь в степень, надо отдельно возвести в эту степень числитель, и отдельно — знаменатель.
Можно решать по-другому. Если вспомнить определение степени, задача сведется к обычному умножению дробей:
Многоэтажные дроби
До сих пор мы рассматривали лишь «чистые» дроби, когда числитель и знаменатель представляют собой обыкновенные числа. Это вполне соответствует определению числовой дроби, данному в самом первом уроке.
Но что, если в числителе или знаменателе разместить более сложный объект? Например, другую числовую дробь? Такие конструкции возникают довольно часто, особенно при работе с длинными выражениями. Вот пара примеров:
Здесь и далее мы будем называть эти дроби многоэтажными. Однако имейте в виду, что общепризнанного названия у них нет, и в разных учебниках могут встречаться другие определения.
Правило работы с многоэтажными дробями всего одно: от них надо немедленно избавляться. Удалить «лишние» этажи довольно просто, если вспомнить, что дробная черта означает стандартную операцию деления. Поэтому любую дробь можно переписать следующим образом:
Пользуясь этим фактом и соблюдая порядок действий, мы легко сведем любую многоэтажную дробь к обычной. Взгляните на примеры:
Задача. Переведите многоэтажные дроби в обычные:
В каждом случае перепишем основную дробь, заменив разделительную черту знаком деления. Также вспомним, что любое целое число представимо в виде дроби со знаменателем 1. Т.е. 12 = 12/1; 3 = 3/1. Получаем:
В последнем примере перед окончательным умножением дроби были сокращены.
Специфика работы с многоэтажными дробями
В многоэтажных дробях есть одна тонкость, которую всегда надо помнить, иначе можно получить неверный ответ, даже если все вычисления были правильными. Взгляните:
Это выражение можно прочитать по-разному:
- В числителе стоит отдельное число 7, а в знаменателе — дробь 12/5;
- В числителе стоит дробь 7/12, а в знаменателе — отдельное число 5.
Итак, для одной записи получили две совершенно разных интерпретации. Если подсчитать, ответы тоже будут разными:
Чтобы запись всегда читалась однозначно, используйте простое правило: разделяющая черта основной дроби должна быть длиннее, чем черта вложенной. Желательно — в несколько раз.
Если следовать этому правилу, то приведенные выше дроби надо записать так:
Да, возможно, это некрасиво и занимает слишком много места. Зато вы будете считать правильно. Напоследок — пара примеров, где действительно возникают многоэтажные дроби:
Задача. Найдите значения выражений:
Итак, работаем с первым примером. Переведем все дроби в неправильные, а затем выполним операции сложения и деления:Аналогично поступим со вторым примером. Переведем все дроби в неправильные и выполним требуемые операции. Чтобы не утомлять читателя, я опущу некоторые очевидные выкладки. Имеем:
Благодаря тому, что в числителе и знаменателе основных дробей стоят суммы, правило записи многоэтажных дробей соблюдается автоматически. Кроме того, в последнем примере мы намеренно оставили число 46/1 в форме дроби, чтобы выполнить деление.
Также отмечу, что в обоих примерах дробная черта фактически заменяет скобки: первым делом мы находили сумму, и лишь затем — частное.
Кто-то скажет, что переход к неправильным дробям во втором примере был явно избыточным. Возможно, так оно и есть. Но этим мы страхуем себя от ошибок, ведь в следующий раз пример может оказаться намного сложнее. Выбирайте сами, что важнее: скорость или надежность.
Источник: https://www.berdov.com/docs/fraction/complex_expressions/