Что называют постоянной авогадро чему она равна. Атомная единица массы. Число Авогадро

Что скрывает число Авогадро, и как посчитать молекулы?

Что называют постоянной авогадро чему она равна. Атомная единица массы. Число Авогадро

Все, что нас окружает, состоит из мельчайших частиц: атомов и молекул. И не важно что это: стул, на котором мы сидим, монитор компьютера, в который мы смотрим, чай в кружке, который давно уже остыл, дожидаясь нас на кухне, все это — атомы и молекулы. Да что уж говорить, наше тело — это тоже атомы и молекулы. Но возможно ли посчитать их? Оказалось, что да.

Тут стоит сделать небольшое отступление и разобраться, в чем разница между ними. Так под атомами мы будем понимать минимальные частицы химических элементов, а под молекулами соединения двух и более атомов. Так, например, мельчайшая частица углерода — это, непосредственно, сам атом углерода С, а мельчайшая частица воды, исходя из формулы H2O, это два атома водорода и один атом кислорода.

Моль, количество вещества и число Авогадро

В далеком 1811 году итальянский ученый из Турина Лоренцо Романо Амедео Карло Авогадро ди Кваренья э ди (Не пугайтесь, это все один человек) высказал одну интересную гипотезу.

По его словам газы при одинаковом давлении, объеме и температуре должны содержать одинаковое количество молекул. И, хотя эта гипотеза не нашла понимания и поддержки в научных кругах того времени, спустя полвека все же была принята как следствие кинетической теории газов.

Она получила название закон Авогадро. Современная трактовка этого закона звучит следующим образом: 1 моль любого газа при одинаковых давлении и температуре займет один и тот же объем.

При нормальных условиях, когда температура равна 0оС, а давление 1 атм (105Па), газ займет так называемый молярный объем, равный 22,41383 л .

Стоп! А где же здесь говорится о количестве молекул, спросите вы? Все очень просто. Так как число молекул очень велико, и это сильно мешает практическим расчетам, была введена новая физическая величина, называемая количеством вещества (ν). Единицей измерения этой величины стал моль.

Не путать с молью, что живет в шифоньерах и питается шубами. Моль — это такое количество вещества, в котором содержится столько же атомов (или молекул), сколько атомов содержится в 12 граммах углерода. А их там аж 6.02 *1023 штук. Это число называется числом Авогадро (NА).

А значит, если мы имеем дело с газом в объеме 22,41383 литров, мы можем смело сказать, что число молекул этого газа будет равно числу Авогадро. Если условия, конечно, нормальные, то есть давление будет равно 105 Па, а температура 0 оС.

Глядя на это, вспоминается школа, в которой я учился, где была вечная проблема с отоплением, а ведь условия то были нормальные!!! По крайней мере, с точки зрения физики.

Зная количество вещества в молях и число Авогадро очень легко посчитать, сколько молекул содержится в этом веществе. Достаточно просто умножить число Авогадро на количество вещества.

N=NA*ν

И если вы пришли в поликлинику сдавать анализы, ну, скажем, кровь на сахар, зная число Авогадро, вы легко сможете посчитать количество молекул сахара в вашей крови.

Ну, к примеру, анализ показал 5 моль. Умножим этот результат на число Авогадро и получим 3 010 000 000 000 000 000 000 000 штук.

Глядя на эту цифру становится понятно, почему отказались мерить молекулы штуками, и стали мерить молями.

Молярная масса (M).

Если же количество вещества неизвестно, то его можно найти, разделив массу вещества на его молярную массу.

ν=m/M.

А дальше по уже известной формуле можно найти количество молекул. N=NA*ν В общем виде можно выразить как:

N=NA* m/M.

Единственный вопрос, который может тут возникнуть: «что же такое молярная масса?» Нет, это не масса маляра, как может показаться!!! Молярная масса — это масса одного моля вещества. Тут все просто, если в одном моле содержится NA частиц (т.е. равное числу Авогадро), то, умножая массу одной такой частицы m0 на число Авогадро, мы получим молярную массу.

M=m0*NA.

Молярная масса — это масса одного моля вещества.

И хорошо если она известна, а если нет? Придется вычислять массу одной молекулы m0. Но и это не проблема. Необходимо знать только её химическую формулу и иметь под рукой таблицу Менделеева.

Относительная молекулярная масса (Mr).

Если количество молекул в веществе величина очень большая, то масса одной молекулы m0 напротив, величина очень маленькая. Поэтому для удобства расчетов была введена относительная молекулярная масса (Mr). Это отношение массы одной молекулы или атома вещества, к 1/12 массы атома углерода.

Но пусть это вас не пугает, для атомов её указывают в таблице Менделеева, а для молекул она рассчитывается как сумма относительных молекулярных масс всех атомов, входящих в молекулу. Относительная молекулярная масса измеряется в атомных единицах масс (а.е.м), в пересчете на килограммы 1 а.е.м.=1,67• 10-27 кг.

Зная это, мы можем легко определить массу одной молекулы, умножив относительную молекулярную массу на 1,67• 10-27.

m0= Mr*1,67*10-27.

Относительная молекулярная масса — отношение массы одной молекулы или атома вещества, к 1/12 массы атома углерода.

Вспомним формулу для нахождения молярной массы:

M=m0*NA.

Так как m0= Mr* 1,67• 10-27, мы можем выразить молярную массу как:

M=Mr*NA*1,67•10-27.

Теперь если умножить число Авогадро NA на 1,67• 10-27, мы получим 10-3, то есть чтобы узнать молярную массу вещества, достаточно только умножить его молекулярную массу на 10-3.

M=Mr*10-3

Но не спешите все это делать вычисляя количество молекул. Если нам известна масса вещества m, то разделив её на массу молекулы m0, мы получим количество молекул в этом веществе.

N=m / m0

Конечно неблагодарное это дело молекулы считать, мало того, что они маленькие, так еще и движутся постоянно. Того и гляди собьешься, и придется считать заново. Но в науке, как в армии — есть такое слово «надо», и поэтому даже атомы и молекулы были посчитаны…

Источник: https://physicsline.ru/stati/chto-skryvaet-chislo-avogadro-i-kak-poschitat-molekuly/

Закон Авогадро – формулировка, следствия и формулы

Что называют постоянной авогадро чему она равна. Атомная единица массы. Число Авогадро

Член французской научной Академии физик Гей-Люссак вместе с немецким ученым А. Гумбольдтом изложил закономерность порционных взаимодействий, которая выражает отношение между микрообъемами газов в виде простого числа.

Например, 2 + 1 части водорода дают в смеси 2 части водяного пара, а 1 ед. хлора при соединении с 1 ед. водорода образует 2 объема хлорного водорода.

Такая закономерность в то время давала мало пользы, так как не было общего понятия о молекулах, атомах, корпускулах и других частицах газов.

Авогадро проанализировал множество опытов и выяснил, что закон отношений объемов помогает понять устройство любых молекул. Первое суждение состояло в том, что количество частиц любого эфира всегда одно и то же в одинаковом объеме, а сами молекулы состоят из более мелких атомов. Затем ученый конкретизировал предположение и сформулировал его в форме теории с его именем.

Полученные знания означали, что при измерении плотности газа можно вычислить относительный вес молекул. Отсюда вытекает формулировка закона Авогадро.

Если в одинаковом объеме водорода и кислорода присутствует равная численность молекул, то отношение физических величин этих газов тождественно отношению масс составляющих частиц.

Ученый отмечал, что молекула необязательно состоит из одного атома, а может иметь в конструкции несколько простейших элементов.

В то время гипотезу трудно было подтвердить в теории, но предположение давало возможность практически определять состав молекул и высчитывать их относительный вес. Для этого делался анализ на основе нескольких похожих экспериментов.

Например, тождественные части хлора и водорода дают удвоенный объем хлористого водорода, значит, молекула водорода не может быть одноатомной.

Если составные частицы водорода содержат два атома, то и молекулы кислорода насчитывают 2 элемента.

Путаница возникала из-за того, что в те времена не были разработаны простые формулы химических реакций. Теорию Авогадро отвергал знаменитый шведский ученый-химик Я. Берцелиус предположением, что во всех атомах присутствует электрический потенциал, а молекулы, в зависимости от направления заряда, притягиваются или отталкиваются.

Возрождение гипотезы

Подтвердил закон Авогадро молодой химик из Италии С. Канниццаро только после 1850 года. Он строил теорию газообразных частиц на основе правильных удвоенных обозначений (O2, H2), при этом теория Авогадро совпадала с результатами опытов. Он отмечал, что закон Авогадро является самым логическим исходом для объяснения идей атомного и молекулярного строения.

Вначале практические результаты не согласовались с теорией Авогадро и Ампера, знания на некоторое время были забыты.

Но дальнейшие химические эксперименты и логические выводы привели ученых к аналогичной теории, причем этому способствовала спонтанная научная эволюция.

Доказательство теории Авогадро было получено после неосознанного кружения ученых вокруг цели и медленного к ней продвижения.

Постоянное число находилось разными способами. Голубой цвет неба зависит от того, что лучи света рассеиваются в воздухе. Интенсивность распыления зависит от количества элементарных структурных частиц воздуха, заключенного в единице объема. Для определения константы использовалось отношение яркости прямых лучей и тех, что рассеяны в воздухе.

Впервые такие исследования провел итальянский математик Квинтино Селлой на гребне горы Монте-Роза в южной части Швейцарии. Расчеты подтвердили общее положение, что в моле любой материи содержится около 6.1023 элементарных частиц.

Второй метод показал французский деятель науки Жан Батист Перрен. Ученый под микроскопом считал количество взвешенных в жидкости (воде) мельчайших в диаметре приблизительно 1 мм горошин гуммигута. Это вещество, похожее на каучук, выделяется из нектара определенных деревьев в тропиках. Ученый полагал, что к этим элементам применяются аналогичные законы, как для молекул газового класса.

Легко определялась общая молярная масса всех шариков, она рассчитывалась умножением веса одного элемента на количество гранул. Массу горошины можно было измерить, в отличие от настоявшей молекулы вещества. Значение константы у Перрена получилось аналогичное предыдущему варианту и составляло 6,8.1023.

Закон и следствие

После принятия ученым миром теории Авогадро экспериментаторы получили реальную возможность не только верно определять структуру частиц, но и высчитывать молекулярную и атомную массу.

Важным являлся сам закон Авогадро и следствия из него. Знания давали возможность спроектировать соотношение активных компонентов при химическом взаимодействии.

После взвешивания вещества в граммах ученые могли оперировать с составными частицами.

Количество материала, равное показателю молекулярной массы и определенное в граммах, называется молем или грамм-молекулой. Определение моля ввел немецкий физик В. Освальд в начале XX века, он взял за основу корень слова и дополнил уменьшительным суффиксом.

Объем одного моля материала составляет 22,4 л в газообразном виде при обычных условиях:

  • давлении 1,013.105 Па;
  • температуре 0ºС.

Количество частиц в одном моле называется константой Авогадро и отмечается Na. Это определение грамм-молекулы существовало в науке почти столетие.

Первый вывод

Первым следствием закона является то обстоятельство, что один моль или их тождественное число различного газа в одинаковых обстоятельствах занимает тождественный объем.

Одна грамм-молекула различных газов насчитывает равное число составных элементов.

Отсюда выходит, что при заданной температуре и силе давления 1 грамм-молекула любого материала в газообразном виде занимает тождественный объем.

Не только для идеальных условий используется закон Авогадро. Формула Клапейрона-Менделеева применяется, чтобы определить значение для другой температуры и давления pV = nRT, где:

  • n — количество молей газообразного вещества.
  • R — газовая постоянная, равна 8,31431 Дж/моль.
  • V — объем вещества.
  • P — давление.
  • T — температура.

Например, в нормальных обстоятельствах объем 1 моля газообразного вещества всегда равняется 22,413962 (13) л. Эта физическая постоянная величина называется стереотипным молярным объемом безупречного газа и обозначается Vm.

Второй эффект

Следующий вывод из теории Авогадро свидетельствует о том, что молярный вес первого вещества равняется произведению молярного веса второго газа на показатель относительной плотности начальной материи ко второй. Это положение позволяло развиваться химической науке в новом направлении и найти молекулярную массу материи, которая может преобразовываться в пар или газ.

Выражение m/p всегда является постоянным для всех материй, где:

  • m — молекулярный вес вещества;
  • p — относительная плотность материи в состоянии газа или пара.

На практике было доказано обстоятельство, что для всех известных материалов, которые переходят в состояние пара или газа, эта константа равняется 28,9 а. е. м., при этом определяющим условием постоянства является плотность воздуха. Если при научных экспериментах за единицу плотности берется показатель водорода, то константа равняется 2 а. е. м.

Ученый Авогадро не оценивал количество элементарных частиц в определенном объеме, но осознавал, что показатель относится к огромным размерам.

Первый раз пытался определить число структурных элементов в заданной порции газа в 1865 году австрийский химик и физик Иоганн Йозеф Лошмидт. Он рассчитал, что в выбранном объеме воздуха содержится 1,81.1018 см-3.

Этот показатель был снижен относительно правдивого показателя в 15 раз.

Через несколько лет химик повторно провел расчеты уже с применением другого круга сведений и получил 1,9.1019 см-3. С тех пор появилось множество методов для определения количества молекул и наблюдалась тенденция выравнивания полученных результатов, что являлось доказательством существования реальной цифры.

Число Авогадро

Стандартная константа Авогадро составляет физическую величину, которая показывает количество структурных частиц исследуемого материала в объеме вещества, являющегося эквивалентом 1 молю. Если посмотреть показатель в Международной системе единиц, то можно понять, что такое число Авогадро в химии.

Число всегда равняется в СИ, в соответствии с изменением формулировки главных единиц, 6,022 140 76.1023 моль-1. Некоторые справочники приводят разницу между константой Авогадро, обозначающемуся моль-1, с равным ему в численном показателе числом Авогадро А. Молем называется объем материи, содержащий Na конструкционных элементов, а именно столько же, как и в 12 г C по старой модели.

Вес 1 моля материи, определенный в граммах, равняется количественно молекулярному весу, который выражается в единице атомной массы:

  • моль натрия обладает массой 22,989 г, имеет в составе 6,02.1023 атомных частиц;
  • моль фторидных кристаллов кальция имеет вес 78,072 (40,08 + 2.18,996), в строении содержит 6,02.1023 ионов;
  • моль углерода тетрахлорида весит 153,822 (12,02 + 4.35,4505), содержит в структуре 6,02.1023 молекул вещества.

В декабре 2011 года на Генеральном мировом совещании по массам и мерам принято решение установить моль в предполагаемом варианте СИ так, чтобы устранить его привязку к показателю килограмма.

В этом случае задача по определению моля будет решаться через константу Авогадро.

Последнему будет дан точный показатель без всяких погрешностей, который основывается на результатах нахождений, рекомендуемых CODATA (Комитет по сведениям для техники и науки — русское наименование).

До сегодняшнего дня коэффициент Авогадро составляет определяемую величину и принимается по последнему расчету 2015 г. Рекомендованный показатель получен в виде Na = 6,02214082 (11) . 1023 моль-1. Результат был найден в результате расчета среднего значения от нескольких измерений.

Современная трактовка

Константа Авогадро относится к таким большим показателям, что трудно поддается восприятию человеком. Например, если объем волейбольного мяча сделать больше в Na раз, то в нем сможет разместиться наша планета. Если же в Na раз увеличить диаметр этого же мяча, то в него можно уложить галактику с несколькими миллиардами космических объектов.

Другим примером размера коэффициента является показательный пример с выливанием стакана воды в мировой океан. Если это сделать, то взяв меру воды из любого водоема на планете, можно обязательно встретить в сосуде пару десятков молекул, которые находились ранее в стакане.

Современное значение константы было получено в 2010 году при работе с двумя шарами из кремния-28. Для эксперимента сферы изготавливались в немецком Институте кристаллографии и прошли полировку в высокооптическом центре в Австралии. Обработка была настолько точной, что шипы на поверхности были не выше 98 нм.

Для производства брался высокообогащенный тетрофторид кремния, полученный в университете химии высокоочищенных материалов Нижнего Новгорода. Численность элементов кремния в сфере была определена с большой точностью, так как объект исследования представлял практически идеальный вариант. По результатам эксперимента коэффициент Авогадро равнялся 6,02214083 (18).1023 моль-1.

Через год после прошедшего испытания был проведен другой эксперимент, и значение было изменено на 6,022144 078 (18).1023 моль-1. Поэтому ученые всего мира договорились об определении моля так, чтобы константа была точной на основе среднего результата измерений.

Источник: https://nauka.club/khimiya/zakon-avogadro.html

Число Авогадро

Что называют постоянной авогадро чему она равна. Атомная единица массы. Число Авогадро

Число́ Авога́дро, конста́нта Авогадро, постоянная Авогадро — физическая величина, численно равная количеству специфицированных структурных единиц (атомов, молекул[1], ионов, электронов или любых других частиц) в 1 моле вещества[2]. Определяется как количество атомов в 12 граммах (точно) чистого изотопа углерода-12. Обозначается обычно как NA[3], а иногда и L[4].

Значение числа Авогадро, рекомендованное CODATA в 2010 году, составляло:

NA = 6,022 141 29(27)⋅1023 моль−1.

Значение числа Авогадро, рекомендованное CODATA в 2014 году[5]:

NA = 6,022 140 857(74)⋅1023 моль−1

Моль — количество вещества, которое содержит NA структурных элементов (то есть столько же, сколько атомов содержится в 12 г 12С), причём структурными элементами обычно являются атомы, молекулы, ионы и др. Масса 1 моля вещества (молярная масса), выраженная в граммах, численно равна его молекулярной массе, выраженной в атомных единицах массы.Например:

  • 1 моль натрия имеет массу 22,9898 г и содержит примерно 6,02⋅1023 атомов;
  • 1 моль фторида кальция CaF2 имеет массу (40,08 + 2 · 18,998) = 78,076 г и содержит 6,02⋅1023 ионов кальция и 12,04⋅1023 ионов фтора;
  • 1 моль тетрахлорида углерода CCl4 имеет массу (12,011 + 4 · 35,453) = 153,823 г и содержит 6,02⋅1023 молекул тетрахлорида углерода;
  • и т. п.

В конце 2011 года на XXIV Генеральной конференции по мерам и весам единогласно принято предложение[6] определить моль в будущей версии Международной системы единиц (СИ) таким образом, чтобы избежать его привязки к определению килограмма.

Предполагается, что моль в 2018 году будет определён на основе числа Авогадро, которому будет приписано точное значение без погрешности, базирующееся на результатах измерений, рекомендованных CODATA. В настоящее время (2018) число Авогадро пока является измеряемой величиной, не принимаемой по определению.

В 2015 году из наиболее прецизионных измерений получено рекомендованное значение числа Авогадро NA = 6,022 140 82(11)⋅1023 моль−1, полученное в результате усреднения результатов различных измерений[7][8][9].

Закон Авогадро[ | ]

Основная статья: Закон Авогадро

На заре развития атомной теории (1811) А. Авогадро выдвинул гипотезу, согласно которой при одинаковых температуре и давлении в равных объёмах идеальных газов содержится одинаковое количество молекул.

Позже было показано, что эта гипотеза есть необходимое следствие кинетической теории, и сейчас она известна как закон Авогадро.

Его можно сформулировать так: один моль любого газа при одинаковых температуре и давлении занимает один и тот же объём, при нормальных условиях равный 22,41383 литра. Эта величина известна как молярный объём газа.

История измерения константы[ | ]

Сам Авогадро не делал оценок числа молекул в заданном объёме, но понимал, что это очень большая величина.Первую попытку найти число молекул, занимающих данный объём, предпринял в 1865 году Йозеф Лошмидт.

Из вычислений Лошмидта следовало, что для воздуха количество молекул на единицу объёма составляет 1,81⋅1018 см−3, что примерно в 15 раз меньше истинного значения.

Через 8 лет Максвелл привёл гораздо более близкую к истине оценку «около 19 миллионов миллионов миллионов» молекул на кубический сантиметр, или 1,9⋅1019 см−3.По его оценке числа Авогадро было приблизительно 10 22 {\displaystyle 10{22}} .

В действительности в 1 см³ идеального газа при нормальных условиях содержится 2,68675⋅1019 молекул.Эта величина была названа числом (или постоянной) Лошмидта.С тех пор было разработано большое число независимых методов определения числа Авогадро.Превосходное совпадение полученных значений является убедительным свидетельством реального количества молекул.

В 1908 г. Перрен даёт приемлемую оценку 6 , 8 ⋅ 10 23 {\displaystyle 6,8\cdot 10{23}} вычисленной из параметров Броуновского движения.

Современные оценки[ | ]

Один из оптиков австралийского ACPO держит однокилограммовый монокристаллический шар из кремния для проекта International Avogadro Coordination.

Данные в этой статье приведены по состоянию на декабрь 2011 года.Вы можете помочь, обновив информацию в статье.

Официально принятое в 2010 году значение числа Авогадро было измерено при использовании двух сфер, изготовленных из кремния-28.

Сферы были получены в и отполированы в австралийском настолько гладко, что высоты выступов на их поверхности не превышали 98 нм.

Для их производства был использован высокочистый кремний-28, выделенный в нижегородском Институте химии высокочистых веществ РАН из высокообогащённого по кремнию-28 тетрафторида кремния, полученного в Центральном конструкторском бюро машиностроения в Санкт-Петербурге.

Располагая такими практически идеальными объектами, можно с высокой точностью подсчитать число атомов кремния в шаре и тем самым определить число Авогадро. Согласно полученным результатам, оно равно 6,02214084(18)·1023 моль−1[10].

Однако в январе 2011 года были опубликованы результаты новых измерений, считающиеся более точными[11]: NA = 6,02214078(18)⋅1023 моль−1.

На 24-й Генеральной конференции по мерам и весам 17—21 октября 2011 года была единогласно принята резолюция[6], в которой, в частности, предложено в будущей ревизии СИ переопределить моль таким образом, чтобы число Авогадро было равным точно 6,02214X⋅1023 моль−1, где Х заменяет одну или более значащих цифр, которые будут определены в окончательном релизе на основании наиболее точных рекомендаций CODATA[12]. В этой же резолюции предложено таким же образом определить как точные значения постоянную Планка, элементарный заряд, постоянную Больцмана и максимальную световую эффективность монохроматического излучения для дневного зрения.

Литература[ | ]

Источник: https://encyclopaedia.bid/%D0%B2%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F/%D0%9F%D0%BE%D1%81%D1%82%D0%BE%D1%8F%D0%BD%D0%BD%D0%B0%D1%8F_%D0%90%D0%B2%D0%BE%D0%B3%D0%B0%D0%B4%D1%80%D0%BE

Авогадро число

Что называют постоянной авогадро чему она равна. Атомная единица массы. Число Авогадро
статьи

Авогадро число, NA = (6,022045±0,000031)·1023, число молекул в моле любого вещества или число атомов в моле простого вещества. Одна из фундаментальных постоянных, с помощью которой можно определить такие величины, как, например, массу атома или молекулы (см. ниже), заряд электрона и т.д.

Моль – количество вещества, которое содержит столько же структурных элементов, сколько атомов содержится в 12 г 12С, причем структурными элементами обычно являются атомы, молекулы, ионы и др. Масса 1 моль вещества, выраженная в граммах, численно равна его мол. массе.

Так, 1 моль натрия имеет массу 22,9898 г и содержит 6,02·1023 атомов; 1 моль фторида кальция CaF2 имеет массу (40,08 + 2·18,998) = 78,076 г и содержит 6,02·1023 молекул, как и 1 моль тетрахлорида углерода CCl4, масса которого равна (12,011 + 4·35,453) = 153,823 г и т.п.

Закон Авогадро

На заре развития атомной теории (1811) А.Авогадро выдвинул гипотезу, согласно которой при одинаковых температуре и давлении в равных объемах идеальных газов содержится одинаковое число молекул.

Позже было показано, что эта гипотеза есть необходимое следствие кинетической теории, и сейчас она известна как закон Авогадро.

Его можно сформулировать так: один моль любого газа при одинаковых температуре и давлении занимает один и тот же объем, при стандартных температуре и давлении (0° С, 1,01Ч105 Па) равный 22,41383 л. Эта величина известна как молярный объем газа.

Сам Авогадро не делал оценок числа молекул в заданном объеме, но понимал, что это очень большая величина. Первую попытку найти число молекул, занимающих данный объем, предпринял в 1865 Й.

Лошмидт; было установлено, что в 1 см3 идеального газа при нормальных (стандартных) условиях содержится 2,68675Ч1019 молекул. По имени этого ученого указанная величина была названа числом (или постоянной) Лошмидта. С тех пор было разработано большое число независимых методов определения числа Авогадро.

Превосходное совпадение полученных значений является убедительным свидетельством реального существования молекул.

Метод Лошмидта

представляет только исторический интерес. Он основан на предположении, что сжиженный газ состоит из плотноупакованных сферических молекул. Измеряя объем жидкости, которая образовалась из данного объема газа, и зная приблизительно объем молекул газа (этот объем можно было представить исходя из некоторых свойств газа, например вязкости), Лошмидт получил оценку числа Авогадро ~1022.

Определение, основанное на измерении заряда электрона

Единица количества электричества, известная как число Фарадея F, – это заряд, переносимый одним молем электронов, т.е. F = Ne, где е – заряд электрона, N – число электронов в 1 моль электронов (т.е. число Авогадро).

Число Фарадея можно определить, измеряя количество электричества, необходимое для растворения или осаждения 1 моль серебра. Тщательные измерения, выполненные Национальным бюро стандартов США, дали значение F = 96490,0 Кл, а заряд электрона, измеренный разными методами (в частности, в опытах Р.Милликена), равен 1,602Ч10–19 Кл.

Отсюда можно найти N. Этот метод определения числа Авогадро, по-видимому, является одним из самых точных.

Эксперименты Перрена

Исходя из кинетической теории, было получено включающее число Авогадро выражение, описывающее уменьшение плотности газа (например, воздуха) с высотой столба этого газа. Если бы удалось подсчитать число молекул в 1 см3 газа на двух разных высотах, то, воспользовавшись указанным выражением, мы могли бы найти N.

К сожалению, сделать это невозможно, поскольку молекулы невидимы. Однако в 1910 Ж.Перрен показал, что упомянутое выражение справедливо и для суспензий коллоидных частиц, которые видны в микроскопе. Подсчет числа частиц, находящихся на разной высоте в столбе суспензии, дал число Авогадро 6,82Ч1023.

Из другой серии экспериментов, в которых измерялось среднеквадратичное смещение коллоидных частиц в результате их броуновского движения, Перрен получил значение N = 6,86Ч1023. В дальнейшем другие исследователи повторили некоторые из экспериментов Перрена и получили значения, хорошо согласующиеся с ныне принятыми.

Следует отметить, что эксперименты Перрена стали поворотным моментом в отношении ученых к атомной теории вещества – ранее некоторые ученые рассматривали ее как гипотезу. В.Оствальд, выдающийся химик того времени, так выразил это изменение во взглядах: «Соответствие броуновского движения требованиям кинетической гипотезы…

заставило даже наиболее пессимистично настроенных ученых говорить об экспериментальном доказательстве атомной теории».

Расчеты с использованием числа Авогадро

С помощью числа Авогадро были получены точные значения массы атомов и молекул многих веществ: натрия, 3,819Ч10–23 г (22,9898 г/6,02Ч1023), тетрахлорида углерода, 25,54Ч10–23 г и т.д. Можно также показать, что в 1 г натрия должно содержаться примерно 3Ч1022 атомов этого элемента.
См. также АТОМНАЯ МАССА.

Источник: https://www.krugosvet.ru/enc/nauka_i_tehnika/himiya/AVOGADRO_CHISLO.html

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.